LSC meeting, 25/05/07 Thermal lensing simulation 1 Faraday thermal lensing numerical simulations Slim Hamdani EGO LIGO-G070358-00-Z.

Slides:



Advertisements
Similar presentations
© 2011 Autodesk Freely licensed for use by educational institutions. Reuse and changes require a note indicating that content has been modified from the.
Advertisements

Estimation of Convective Heat Transfer Coefficient
UNIT 13 : HEAT 13.1 Thermal Conductivity 13.2 Thermal Expansion.
MECHANISM OF HEAT TRANSFER Mode of Heat transfer Conduction Convection
COMPUTER MODELING OF LASER SYSTEMS
High Power Input Optics for Advanced Virgo Julien Marque, Benjamin Canuel, Richard Day, Eric Génin, Flavio Nocera, Federico Paoletti The European Gravitational.
Thermal Analysis of short bake out jacket version 1 12-Nov-2013.
CHE/ME 109 Heat Transfer in Electronics
Ambient temperature inside an automobile subject to external conditions. MeEn 340 By Eric McKane and Benton Russell.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
Atmospheric Analysis Lecture 2.
Fluid Dynamics: Boundary Layers
Feasibility Analysis h T1 T2 T3 T4 T5 One Dimensional Transient Analysis One Dimensional Finite Difference Steady State Analysis T1 and T5 will be known.
External Flow: The Flat Plate in Parallel Flow
Heat Transfer Rates Conduction: Fourier’s Law
Physics of Fusion power Lecture4 : Quasi-neutrality Force on the plasma.
Introduction to Heat Transfer
Thermo-Optic Effects Chapter 7 Solid State Lasers By W. Keochner.
ILIAS WG1 meeting, 19/06/07 IB Faraday Isolator 1 IB in vacuum Faraday isolator E. Genin, S. Hebri, S. Hamdani, P. La Penna, J. Marque EGO.
AAE450 Spring 2009 Kelly Leffel 3/0509 Structures and Thermal Lunar Descent Phase Lander Integration Lander Thermal Control Kelly Leffel Structures and.
LATLAT Tower T/V MGSE Memo 11 th November GLAST Program Analysis Memo TKR Tower Thermal-Vacuum Test MGSE Nicola Saggini INFN – Pisa
Free Convection A free convection flow field is a self-sustained flow driven by the presence of a temperature gradient. (As opposed to a forced convection.
Thermal Compensation: The GEO and LIGO experience and requirements for advanced detectors Gregory Harry LIGO/MIT On behalf of the LIGO Science Collaboration.
What are common results of heat transfer? Case #1, no phase transition or work done. How much does the temperature vary? Heat is energy in transit! Positive,
ASRAE Student Branch meeting Speaker: Kenneth Simpson USGBC – LEED rating system Today at 5 pm ECJ
Thermal Compensation in Stable Recycling Cavity 21/03/2006 LSC Meeting 2006 UF LIGO Group Muzammil A. Arain.
Content  Turbulent Validation  Thermal Validation  Simple Model Test  Plans for Next Period.
Application of QuickField Software to Heat Transfer Problems i j k By Dr. Evgeni Volpov.
Electromagnetic Waves and Their Propagation Through the Atmosphere
Feb 3, 2009Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA1 Advanced Virgo : cryostat designs Some thermal aspects Eric Hennes, University.
CLIC Prototype Test Module 0 Super Accelerating Structure Thermal Simulation Introduction Theoretical background on water and air cooling FEA Model Conclusions.
Box Model: Core Evolution ~ 700 Myr T(r,t) C(r,t) r ICB (t) 3D Model: Numerical Dynamo ~ 5 Myr intervals T(x,t) C(x,t) B(x,t) T(x,t) C(x,t) B(x,t) Thermodynamic.
Thermal Control Robert Manning AAE450 Spring 2007.
Paolo La Penna Injection optics for Advanced VirgoLSC/VIRGO joint meeting, Cascina, 25/05/ Advanced VIRGO Input optics LIGO-G Z.
1 Thin Lens Light refracts on the interface of two media, following Snell’s law of refraction: Light bends through a triangular prism: θ 1 and θ 2 are.
Heat Transfer Equations. Fouling Layers of dirt, particles, biological growth, etc. effect resistance to heat transfer We cannot predict fouling factors.
Thermal Compensation System V. Fafone for the TCS Subsystem.
AdV Thermal Compensation System Viviana Fafone AdV/aLIGO joint technical meeting, February 4, 2004.
Instructor: M.T. Esfidani
Experimental Test of Radiative Cooling Roberto Passaquieti Università di Pisa and INFN-Pisa V. Fafone, Y. Minenkov, I. Modena, A. Rocchi Università di.
Sarthit Toolthaisong FREE CONVECTION. Sarthit Toolthaisong 7.2 Features and Parameters of Free Convection 1) Driving Force In general, two conditions.
HW/Tutorial # 1 WRF Chapters 14-15; WWWR Chapters ID Chapters 1-2
17/05/2010A. Rocchi - GWADW Kyoto2 Thermal effects: a brief introduction  In TM, optical power predominantly absorbed by the HR coating and converted.
MECHANISM OF HEAT TRANSFER.  HEAT TRANSFER  Occurs only between regions that are at different temperature and its direction is always from higher to.
Cascina, Nov. 4 th, 2008 AdV review 1 AdV Injection system E. Genin European Gravitational Observatory.
ENEN BSRT: NUMERICAL EVALUATION OF RF INDUCED HEATING 04/09/2012EN-MME-PE.
External Flow: The Flat Plate in Parallel Flow
HW/Tutorial # 1 WRF Chapters 14-15; WWWR Chapters ID Chapters 1-2 Tutorial #1 WRF#14.12, WWWR #15.26, WRF#14.1, WWWR#15.2, WWWR#15.3, WRF#15.1, WWWR.
Some considerations on radiative cooling V. Fafone, Y. Minenkov, I. Modena, A. Rocchi INFN Roma Tor Vergata.
External Flow: The Flat Plate in Parallel Flow Chapter 7 Section 7.1 through 7.3.
LIGO-G Z Silicon as a low thermal noise test mass material S. Rowan, R. Route, M.M. Fejer, R.L. Byer Stanford University P. Sneddon, D. Crooks,
Thermal Compensation System TCS V. Fafone for the TCS Subsystem.
G Z 1 eLIGO/advLIGO FI update Antonio Lucianetti, K.L. Dooley, R. Martin, L. F. Williams, M.A. Arain, V. Quetschke, G. Mueller, D.B. Tanner, and.
1 Advanced Faraday isolator designs for high average powers. Efim Khazanov, Anatoly Poteomkin, Nikolay Andreev, Oleg Palashov, Alexander Sergeev Institute.
Light & Optics Chapters Electromagnetic Wave.
Laser Adaptive Optics for Advanced LIGO
Thermal compensation issues: sensing and actuation V. Fafone University of Rome Tor Vergata and INFN ASPERA Technological Forum – EGO October, 2011.
Thermal Considerations in a Pipe Flow (YAC: 10-1– 10-3; 10-6) Thermal conditions  Laminar or turbulent  Entrance flow and fully developed thermal condition.
Minimum Cooling Time for Metallurgy Applications
Building Energy Analysis
Power Magnetic Devices: A Multi-Objective Design Approach
Thermal Energy & Heat Ch. 16 Intro to Physics.
Fundamentals of Heat Transfer
FREE CONVECTION – FIXED POWER TD1005
Heat Transfer in Extended Surface
Boiling Heat Transfer Exercise
Heat Transfer Coefficient
FORCED CONVECTION AND EFFECTIVE VELOCITY
Advanced Virgo : cryostat designs Some thermal aspects
Fundamentals of Heat Transfer
Presentation transcript:

LSC meeting, 25/05/07 Thermal lensing simulation 1 Faraday thermal lensing numerical simulations Slim Hamdani EGO LIGO-G Z

LSC meeting, 25/05/07 Thermal lensing simulation 2 Faraday Thermal Lensing When heated, the Faraday isolator: -Changes its polarization (isolation) -Change non uniformly its refraction index (lensing) -Change non uniformly its dimensions (lensing) Virgo: -10W + 3W - mismaching:~0.5% Virgo +: - 40W + 10W - mismaching:~5% Advanced Virgo: - 150W + 50W - mismaching:~37%

LSC meeting, 25/05/07 Thermal lensing simulation 3 Finite elements Gaussian beam conduction Vacuum or not air cooling heat radiation Shield or not radiation M. Punturo Matlab’s algorithm

LSC meeting, 25/05/07 Thermal lensing simulation 4 Finite elements simulation Heat transfer equations conduction Q=  A  T/d Q [Watt/sec] rate of heat flow  [Wm -1 K -1 ] thermal conductivity A [m 2 ] contact area  T temperature difference d [m] distance of heat flow radiation Q=A  (T 4 -T 0 4 ) Q [Watt/sec] rate of heat flow A [m 2 ] contact area  [Wm -2 K -4 ] Stefan Boltzmann cst  emissivity T [K] temperature

LSC meeting, 25/05/07 Thermal lensing simulation 5 External conditions simulation convection Q=  (T-T air )A Q [Watt/sec] rate of heat flow  [Wm-1K-1] flux caracterization  T [K] sample temperature  T air [K] air temperature A [m2] contact area  =[10:100] turbulent or laminar flux Air or vacuum Shield or free Radiation transfer (with the shield considered always thermalized) radiation Q=A  (T 4 -T 0 4 )

LSC meeting, 25/05/07 Thermal lensing simulation 6 TGG heated by a Watt Yag Temperature map PR aligned Temperature map Refraction index map & Verdet cst map

LSC meeting, 25/05/07 Thermal lensing simulation 7 Phase Mean phase change Refraction index Thermal expansion TGG heated by a Watt Yag

LSC meeting, 25/05/07 Thermal lensing simulation 8 N index fit -> ZmaxGaussianweighted mean 2 nd order fit 6 th order radial polynomial fit Zmax

LSC meeting, 25/05/07 Thermal lensing simulation 9 Focal approximation fit limits ~+- 1waist Circle fit Radius of curvature focal

LSC meeting, 25/05/07 Thermal lensing simulation 10 Virgo+ and Advanced Virgo thermal lensing VIRGO+ (50Watt) Thermal lens: f=66m Mismatch: 5% Advanced VIRGO (200Watt) Thermal lens: f=13m Mismatch: 37% E. Genin logbook entry tunable with the input telescope

LSC meeting, 25/05/07 Thermal lensing simulation 11 TGG characterization TGG emissivity0.89 thermal conductivity [K W/m] 7.4 density [g/cm 3 ] 7.32 specific heat [J/(K kg)] 385 substrate losses [1/cm] 1.65e-3 thermal expansion [1/K] 9.4e-6 refraction index1.94 dn/dT [1/K] 1.9e-5 Depending of the sample +- 4 times Preliminary test with a 650mWatt Yag, waist: 180  m Next test wit a Watt Yag waist Flip mirror 95% reflection Cold-Hot: R~24m. Simulation: R=24.3m. SH Yag TGG 2.70e-3

LSC meeting, 25/05/07 Thermal lensing simulation 12 Faraday compensation Thermal lensing: converging lens converging lensCompensator: thermal diverging lens thermal diverging lens VIRGO + Advanced VIRGO  ° rotator Kazanov et al 2004 polarizer DKDP ? 22.5 ° ? ? TGG 45° polarizer DKDP ?VIRGO+ ring heater  plate

LSC meeting, 25/05/07 Thermal lensing simulation 13 To do - Depolarization 50W and 200W on TGG, DKDP or others -Physical parameters characterization of TGG -Validation of the simulation with the metallic shield and under vacuum - Test final design for VIRGO+ - Studying the design for Advanced VIRGO