Module 11 Scatterplots, Association, and Correlation.

Slides:



Advertisements
Similar presentations
Correlation and Linear Regression
Advertisements

 Objective: To look for relationships between two quantitative variables.
Scatterplots, Association, and Correlation
Correlation Data collected from students in Statistics classes included their heights (in inches) and weights (in pounds): Here we see a positive association.
Correlation and Linear Regression
Copyright © 2009 Pearson Education, Inc. Chapter 8 Linear Regression.
Scatterplots, Association, and Correlation 60 min.
Scatterplots, Association,and Correlation
Scatterplots, Association, and Correlation Copyright © 2010, 2007, 2004 Pearson Education, Inc.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 7 Scatterplots, Association, and Correlation.
1-1 Copyright © 2015, 2010, 2007 Pearson Education, Inc. Chapter 6, Slide 1 Chapter 6 Scatterplots, Association and Correlation.
Correlation with a Non - Linear Emphasis Day 2.  Correlation measures the strength of the linear association between 2 quantitative variables.  Before.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 7 Scatterplots, Association, and Correlation.
CHAPTER 4: Scatterplots and Correlation ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner Lecture Presentation.
Copyright © 2010 Pearson Education, Inc. Unit 2: Chapter 7 Scatterplots, Association, and Correlation.
Examining Relationships
Scatterplots, Association,
Examining Relationships Prob. And Stat. 2.2 Correlation.
Scatterplots, Associations, and Correlation
 Chapter 7 Scatterplots, Association, and Correlation.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 9 Regression Wisdom.
Slide 7-1 Copyright © 2004 Pearson Education, Inc.
1 Chapter 7 Scatterplots, Association, and Correlation.
Copyright © 2010 Pearson Education, Inc. Slide Lauren is enrolled in a very large college calculus class. On the first exam, the class mean was a.
Copyright © 2010 Pearson Education, Inc. Slide Lauren is enrolled in a very large college calculus class. On the first exam, the class mean was a.
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 8 Linear Regression.
Correlation.  It should come as no great surprise that there is an association between height and weight  Yes, as you would expect, taller students.
Relationships If we are doing a study which involves more than one variable, how can we tell if there is a relationship between two (or more) of the.
Chapter 7 Scatterplots, Association, and Correlation
4.2 Correlation The Correlation Coefficient r Properties of r 1.
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 7 Scatterplots, Association, and Correlation.
Copyright © 2010 Pearson Education, Inc. Chapter 7 Scatterplots, Association, and Correlation.
DO NOW 1.Given the scatterplot below, what are the key elements that make up a scatterplot? 2.List as many facts / conclusions that you can draw from this.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 1.
CP Prob & Stats Unit 4 – Chapter 7 A Tale of Two Variables.
UNIT 4 Bivariate Data Scatter Plots and Regression.
Chapter 7 Scatterplots, Association, and Correlation.
Scatterplots Association and Correlation Chapter 7.
Chapter 7 Scatterplots, association, and correlation math2200.
Correlation  We can often see the strength of the relationship between two quantitative variables in a scatterplot, but be careful. The two figures here.
Copyright © 2010 Pearson Education, Inc. Chapter 3 Scatterplots, Correlation and Least Squares Regression Slide
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 7 Scatterplots, Association, and Correlation.
Chapter 5 Lesson 5.1a Summarizing Bivariate Data 5.1a: Correlation.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 7 Scatterplots, Association, and Correlation.
Honors Statistics Chapter 7 Scatterplots, Association, and Correlation.
Statistics 7 Scatterplots, Association, and Correlation.
Scatterplots, Association, and Correlation. Scatterplots are the best way to start observing the relationship and picturing the association between two.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 3: Describing Relationships Section 3.1 Scatterplots and Correlation.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 1.
Part II Exploring Relationships Between Variables.
Scatterplots, Association, and Correlation
Chapter 3: Describing Relationships
Chapter 7: Scatterplots, Association, and Correlation
Chapter 7 Scatterplots, Association, and Correlation
Scatterplots, Association and Correlation
Chapter 7: Scatterplots, Association, and Correlation
Chapter 7 Scatterplots, Association, and Correlation
Chapter 7 Scatterplots, Association, and Correlation
Chapter 7 Part 1 Scatterplots, Association, and Correlation
Chapter 7 Part 2 Scatterplots, Association, and Correlation
Looking at Scatterplots
Scatterplots, Association, and Correlation
Scatterplots, Association, and Correlation
Scatterplots, Association, and Correlation
Chapter 7: Scatterplots, Association, and Correlation
Chi-square Test for Goodness of Fit (GOF)
Scatterplots, Association and Correlation
Scatterplots Scatterplots may be the most common and most effective display for data. In a scatterplot, you can see patterns, trends, relationships, and.
Correlation r Explained
Scatterplots, Association, and Correlation
Presentation transcript:

Module 11 Scatterplots, Association, and Correlation

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 2 Looking at Scatterplots Scatterplots may be the most common and most effective display for two numerical variables. In a scatterplot, you can see patterns, trends, relationships, and outliers. Scatterplots are the best way to start observing the relationship and the ideal way to picture associations between two numerical variables.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 3 Looking at Scatterplots (cont.) When looking at scatterplots, we will look for direction, form, strength, and unusual features. Direction: A pattern that runs from the upper left to the lower right is said to have a negative direction. A trend running the other way has a positive direction.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 4 Looking at Scatterplots (cont.) Figure 7.1 from the text shows a positive association between the year since 1900 and the % of people who say they would vote for a woman president. As the years have passed, the percentage who would vote for a woman has increased.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 5 Looking at Scatterplots (cont.) Figure 7.2 from the text shows a negative association between central pressure and maximum wind speed As the central pressure increases, the maximum wind speed decreases.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 6 Looking at Scatterplots (cont.) Form: If there is a straight line (linear) relationship, it will appear as a cloud or swarm of points stretched out in a generally consistent, straight form.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 7 Looking at Scatterplots (cont.) Form: If the relationship isn’t straight, but curves gently, while still increasing or decreasing steadily, we can often find ways to make it more nearly straight.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 8 Looking at Scatterplots (cont.) Form: If the relationship curves sharply, the methods of this book cannot really help us.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 9 Looking at Scatterplots (cont.) Strength: At one extreme, the points appear to follow a single stream (whether straight, curved, or bending all over the place).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide Looking at Scatterplots (cont.) Strength: At the other extreme, the points appear as a vague cloud with no discernable trend or pattern: Note: we will quantify the amount of scatter soon.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide Roles for Variables It is important to determine which of the two quantitative variables goes on the x-axis and which on the y-axis. This determination is made based on the roles played by the variables. When the roles are clear, the explanatory or predictor variable goes on the x-axis, and the response variable goes on the y-axis.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide Data collected from students in Statistics classes included their heights (in inches) and weights (in pounds): Here we see a positive association and a fairly straight form, although there seems to be a high outlier. Correlation

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide How strong is the association between weight and height of Statistics students? If we had to put a number on the strength, we would not want it to depend on the units we used. A scatterplot of heights (in centimeters) and weights (in kilograms) doesn’t change the shape of the pattern: Correlation (cont.)

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide Correlation (cont.) The correlation coefficient (r) gives us a numerical measurement of the strength of the linear relationship between the explanatory and response variables.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Correlation (cont.) For the students’ heights and weights, the correlation is What does this mean in terms of strength?

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide Correlation Conditions Correlation measures the strength of the linear association between two quantitative variables. Before you use correlation, you must check: Do you have 2 numerical variables? Does the data look straight enough in the scatterplot? Do you have outliers?

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide Correlation Properties The sign of a correlation coefficient gives the direction of the association. Correlation is always between -1 and +1. Correlation can be exactly equal to -1 or +1, but these values are unusual in real data because they mean that all the data points fall exactly on a single straight line. A correlation near zero corresponds to a weak linear association.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide Correlation Properties (cont.) Correlation treats x and y symmetrically: The correlation of x with y is the same as the correlation of y with x. Correlation has no units. Correlation is not affected by changes in the center or scale of either variable. Correlation is sensitive to outliers. A single outlying value can make a small correlation large or make a large one small.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide Correlation Properties (cont.) Correlation measures the strength of the linear association between the two variables. Variables can have a strong association but still have a small correlation if the association isn’t linear.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide What Can Go Wrong? Don’t say “correlation” when you mean “association.” More often than not, people say correlation when they mean association. The word “correlation” should be reserved for measuring the strength and direction of the LINEAR relationship between two quantitative variables.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide What Can Go Wrong? (cont.) Don’t correlate categorical variables. Be sure to check the Quantitative Variables Condition. Be sure the association is linear. There may be a strong association between two variables that have a nonlinear association.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide Just because the correlation coefficient is high, don’t assume the relationship is linear. What Can Go Wrong? (cont.) Here the correlation is 0.979, but the relationship is actually bent.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide What Can Go Wrong? (cont.) Beware of outliers. Even a single outlier can dominate the correlation value. Make sure to check the Outlier Condition.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide What Can Go Wrong? (cont.) Don’t confuse correlation with causation. Not every relationship is one of cause and effect.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide What Can Go Wrong? (cont.) Watch out for lurking variables. A hidden variable that stands behind a relationship and determines it by simultaneously affecting the other two variables is called a lurking variable.