Simplified DES
S-DES algorithm The S-DES encryption algorithm takes an 8-bit block of plaintext (e.g., 10111101) 10-bit key as input and produces an 8-bit block of ciphertext as output. The S-DES decryption algorithm takes an 8-bit block of ciphertext and the same 10-bit key used produce the original 8-bit block of plaintext.
Simplified DES 10-Bit key Decryption Encryption 8-bit Plaintext Shift IP IP-1 K1 P8 K1 fk fk Shift SW SW K2 P8 K2 Encryption involves 5 functions executed in the following order 1. Initial permutation IP 2. A function fk (combo of permutation & susbstutution) 3. A switch function SW that swaps halves. 4. The function fkagain 5. The inverse of IP, IP-1 Decryption is the symmetrical inverse of encryption Runs the algorithm backwards - undoing encryption fk fk IP-1 IP 8-bit Ciphertext 8-bit Ciphertext
S-DES encryption The encryption algorithm involves five functions: an initial permutation (IP); a complex function labeled fk, which involves both permutation and substitution operations and depends on a key input; a simple permutation function that switches (SW) the two halves of the data; The function fk again; and a permutation function that is the inverse of the initial permutation (IP-1).
The encryption algorithm as a composition of functions Decryption is essentially the reverse of encryption
Simplified DES - Key Generation 10 bits P10 Permutation Split Key, Circular Shift Permutation - K1 output Permutation, K2 output 5 bits 5 bits LS-1 LS-1 5 bits 5 bits P8 K1 8 bits LS-2 LS-2 Sub-key generation consists of 3 functions/in 5 steps 1. A 10 bit permutation [3 5 2 7 4 10 1 9 8 6] Input bits [1 2 3 4 5 6 7 8 9 10] Output bits 2. A left shift 3. An 8 bit permutation for the 1st sub-key 4. A second left shift 5. A final permutation producing the 2nd key. 5 bits 5 bits P8 K2 8 bits
S-DES Key Generation S-DES depends on the use of a 10-bit key shared between sender and receiver. Two 8-bit subkeys are produced for use in particular stages of the encryption and decryption algorithm.
Simplified DES - Key Generation P10 Permutation: P10(in-order) = k1, k2, k3, k4, k5, k6, k7, k8, k9, k10 (1010000010) P10(out-order)= k3, k5, k2, k7, k4, k10, k1, k9, k8, k6 (1000001100) Split the permuted key into 2 five-bit halves and circular left shift 1 Input = 10000 01100 Output = 00001 11000 P8 Permutation - selects and permutes 8 of the 10 bits Result is Sub-key K1 = 10100100 P8 6 3 7 4 8 5 10 9
Simplified DES - Key Generation To get sub-key K2: Take output of original circular left shift 1 and shift an additional 2 Input = 00001 11000 Output = 00100 00011 Apply P8 to this value to produce K2 K2 = 01000011 This completes the generation of K1 and K2
Simplified DES - Encryption Two permutation functions (initial - IP, and final IP-1), where IP-1 is the inverse of IP; that is IP-1(IP(X)) = X. Two permutation/substitution functions fk each using one sub-key, on the left (L) and right (R) data elements. That is: fk(L,R) = (L F(R, SK), R) where SK is a sub-key and is the bit-by-bit Exclusive OR. One switch function SW that interchanges the left and right 4 bits so the second instance of fk operates on a different set of bits.
Simplified DES - Initial & Final Permutation IP IP 2 6 3 1 4 8 5 7 Input = 01001101 Output = 11000110 IP-1 IP-1 4 1 3 5 7 2 8 6 Input = 11000110 Output = 01001101 Result is IP-1(IP(X)) = X
Simplified DES - Function fk Assume output of the IP stage is = 10111101 Then L, R = 1011, 1101 And fk(L,R) = (L F(R, SK), R) So fk(1011, 1101) = (1011 F(R, SK), 1101) Now assume F(R, SK) = F(1101, SK) for some sub-key = 1110 (this value will change depending on the sub-key). Then: fk(1011, 1101) = (1011 1110, 1101) = 0101, 1101 Next we need to describe the complex function F(R,SK).
Simplified DES - Function F(R,SK) IP 4 bits Expand/Permute 8 bits 4 bits 4 bits S0 S1 4 bits F(R,SK) 2 bits 2 bits 4 bits P4 4 bits 4 bits SW
Simplified DES - Function Parts of F(R,SK) Expansion/Permutation (4 bits n1, n2, n3, n4) to 8 bits E/P 4 1 2 3 2 3 4 1 Arrange these bits as follows: n4 | n1 , n2 | n3 (left half of expansion/permutation) n2 | n3 , n4 | n1 (right half) Compute: n4 k11 | n1 k12 , n2 k13 | n3 k14 n2 k15 | n3 k16 , n4 k17 | n1 k18
Simplified DES - Function Parts of F(R,SK) Rename these 8 bits: Row 1 p0,0 | p0,1 p0,2 | p0,3 Row 2 p1,0 | p1,1 p1,2 | p1,3 The first 4 bits, row 1 are input to the s-box S0, 2nd row to S-box S1 to produce a 2-bit output for each input bit as follows; 0 1 2 3 0 1 2 3 0 1 0 3 2 0 0 1 2 3 1 3 2 1 0 1 2 0 1 3 S0 2 0 2 1 3 S1 2 3 0 1 0 3 3 1 3 2 3 2 1 0 3 For example, S0, p0,0 = 01; S1, p1,1 = 00
Simplified DES - Function Parts of F(R,SK) P4 Permutation: 2 bit input from S0, 2 bits from S1 P4 2 4 3 1 P4 output = output of fk Switch function: interchanges the left and right halves so the second instance of fk using the second key operates on different data. The second instance of fk operates the same as described above using the k2 sub-key and the switched input. Decryption uses all the same functions run backwards.
Simplified DES Encryption Detail
Simplified DES Key Generation 1010000010 10 bit Key 10 bit Key 35274101986 P10 5 5 10000 | 01100 P10 5 5 00001 11000 LS-1 LS-1 5 5 5 5 637485109 P8 8 K1 8 K1 10100100 00100 00011 LS-2 LS-2 5 5 5 5 637485109 P8 8 8 K2 01000011 K2
Simplified DES 8 4 2 K1 K2 SW Plaintext Ciphertext S0 S1 E/P P4 IP
Simplified DES 1 0 3 2 3 2 1 0 0 2 1 3 3 1 3 2 1 2 3 0 1 2 3 S0= 8 Plaintext 12345678 11110011 PT 2 6 3 1 4 8 5 7 IP 4 4 1011 | 1101 IP 4 1 2 3 2 3 4 1 E/P 8 11101011 E/P 8 K1 0 1 2 3 10100100 K1 4 4 1 2 3 0 1 2 3 2 0 1 3 3 0 1 0 2 1 0 3 01001111 Xor S0 S1 2 2 S1= 11 S0 11 S1 2 4 3 1 P4 4 1111 P4 1011 L 4 0100 Xor SW 1101 0100
Simplified DES 1101 0100 1 0 3 2 3 2 1 0 0 2 1 3 3 1 3 2 1 2 3 0 1 2 3 S0= 4 4 00101000 E/P 4 1 2 3 2 3 4 1 E/P 8 01000011 K2 8 K2 0 1 2 3 01101011 Xor 4 4 1 2 3 0 1 2 3 2 0 1 3 3 0 1 0 2 1 0 3 S0 S1 10 S0 01 S1 2 2 S1= 0101 P4 2 4 3 1 P4 1101 L 4 1000 Xor 4 10000100 +RS IP-1 4 1 3 5 7 2 8 6 8 Ciphertext 01000001