Sounding the cores of stars by gravity-mode asteroseismology Valerie Van Grootel (Institut d’Astrophysique, University of Liege, Belgium) Main collaborators.

Slides:



Advertisements
Similar presentations
Pulsations in White Dwarfs G. Fontaine Université de Montréal Collaborators: P. Brassard, P. Bergeron, P. Dufour, N. Giammichele (U. Montréal) S. Charpinet.
Advertisements

Nebula to Protostar Giant molecular clouds within a nebula contract under the gravitational pressure, increasing its thermal energy. CO, NO, OH- Giant.
Stellar analysis system (SAS*) WP370 T. Appourchaux Institut d’Astrophysique Spatiale, Orsay *SAS= Special Air Service or Son Altesse Sérénissime.
Progress in the asteroseismic analysis of the pulsating sdB star PG S. Charpinet (Laboratoire d’Astrophysique de Toulouse) G. Fontaine and P.
Lars Bildsten Kavli Institute for Theoretical Physics University of California Santa Barbara Insights and Challenges in Stellar Evolution.
Solar-like Oscillations in Red Giant Stars Olga Moreira BAG.
Asteroseismology of solar-type stars Revolutionizing the study of solar-type stars Hans Kjeldsen, Aarhus University.
Chapter 19.
Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.
Observational properties of pulsating subdwarf B stars. Mike Reed Missouri State University With help from many, including Andrzej Baran, Staszek Zola,
Reaching the 1% accuracy level on stellar mass and radius determinations from asteroseismology Valerie Van Grootel (University of Liege) S. Charpinet (IRAP.
Exoplanet- Asteroseismology Synergies Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK EAHS2012, Oxford, 2012 March 15.
SOLUTION 1: ECLIPSING BINARIES IN OPEN CLUSTERS The study of eclipsing binaries in open clusters allows strong constraints to be placed on theoretical.
The Formation and Structure of Stars Chapter 9. Stellar Models The structure and evolution of a star is determined by the laws of: Hydrostatic equilibrium.
1 Influence of the Convective Flux Perturbation on the Stellar Oscillations: δ Scuti and γ Doradus cases A. Grigahcène, M-A. Dupret, R. Garrido, M. Gabriel.
Stellar Structure Section 6: Introduction to Stellar Evolution Lecture 14 – Main-sequence stellar structure: … mass dependence of energy generation, opacity,
ASTEROSEISMOLOGY CoRoT session, January 13, 2007 Jadwiga Daszyńska-Daszkiewicz Instytut Astronomiczny, Uniwersytet Wrocławski.
Inversion of rotation profile for solar-like stars Jérémie Lochard IAS 19/11/04.
Marc Pinsonneault (OSU).  New Era in Astronomy  Seismology  Large Surveys  We can now measure things which have been assumed in stellar modeling 
Nonradial Oscillations. The Science Case:  Stellar Ages - directly for individual stars  Age determination is direct and reliable  Ages to stars which.
The Deaths of Stars Chapter 10. Evolution off the Main Sequence: Expansion into a Red Giant Hydrogen in the core completely converted into He: H burning.
Improving our understanding of Stellar Evolution with PLATO 2.0
PLAnetary Transits and Oscillations of stars Thierry Appourchaux for the PLATO Consortium
Pulsations and magnetic activity in the IR Rafa Garrido & Pedro J. Amado Instituto de Astrofísica de Andalucía, CSIC. Granada.
July Benoît Mosser Observatoire de Paris LESIA Mixed modes in red giants: a window on stellar evolution Stellar End Products Stellar End Products:
Future of asteroseismology II Jørgen Christensen-Dalsgaard Institut for Fysik og Astronomi, Aarhus Universitet Dansk AsteroSeismologisk Center.
The formation of sdB stars vvv Influence of substellar bodies on late stages of stellar evolution Valerie Van Grootel (1) S. Charpinet (2), G. Fontaine.
Scientific aspects of SONG Jørgen Christensen-Dalsgaard Department of Physics and Astronomy Aarhus University.
10/9/ Studying Hybrid gamma Doradus/ delta Scuti Variable Stars with Kepler Joyce A. Guzik (for the Kepler Asteroseismic Science Consortium) Los.
Stellar Fuel, Nuclear Energy and Elements How do stars shine? E = mc 2 How did matter come into being? Big bang  stellar nucleosynthesis How did different.
Asteroseismological determination of stellar rotation axes: Feasibility study (COROT AP+CP) L. Gizon(1), G. Vauclair(2), S. Solanki(1), S. Dreizler(3)
Stellar Parameters through Analysis of the Kepler Oscillation Data Chen Jiang & Biwei Jiang Department of Astronomy Beijing Normal University 2 April 2010.
Star Formation. Introduction Star-Forming Regions The Formation of Stars Like the Sun Stars of Other Masses Observations of Brown Dwarfs Observations.
AST101 Lecture 13 The Lives of the Stars. A Tale of Two Forces: Pressure vs Gravity.
Excitation and damping of oscillation modes in red-giant stars Marc-Antoine Dupret, Université de Liège, Belgium Workshop Red giants as probes of the structure.
The asteroseismic analysis of the pulsating sdB Feige 48 revisited V. Van Grootel, S. Charpinet, G. Fontaine P. Brassard, E.M. Green and P. Chayer.
Valerie Van Grootel(1) G. Fontaine(2), P. Brassard(2), and M. A
Chapter 19 Star Formation
asteroseismology of pulsating sdB stars
Internal rotation: tools of seismological analysis and prospects for asteroseismology Michael Thompson University of Sheffield
Travis Metcalfe (NCAR) Asteroseismology with the Kepler Mission We are the stars which sing, We sing with our light; We are the birds of fire, We fly over.
Asteroseismology of evolved stars: from hot B subdwarfs to white dwarfs Valerie Van Grootel Université de Liège, FNRS Research Associate Main collaborators:
A Practical Introduction to Stellar Nonradial Oscillations (i) Rich Townsend University of Delaware ESO Chile ̶ November 2006 TexPoint fonts used in EMF.
Extrasolar Planets and Stellar Oscillations in K Giant Stars Notes can be downloaded from
Curvelet analysis of asteroseismic data: The Procyon noise-reduced MOST power spectrum R. A. García (1,2), P. Lambert (1,2), J. Ballot (2,3), S. Pires.
Modelling high-order g-mode pulsators Nice 27/05/2008 A method for modelling high-order, g-mode pulsators: The case of γ Doradus stars. A. Moya Instituto.
Asteroseismology A brief Introduction
Precision stellar physics from the ground Andrzej Pigulski University of Wrocław, Poland Special Session #13: High-precision tests of stellar physics from.
The Empirical Mass Distribution of Hot B Subdwarfs derived by asteroseismology and other means Valerie Van Grootel (1) G. Fontaine (2), P. Brassard (2),
PHYSICS UNDER THE BONNET OF A STELLAR EVOLUTION CODE Richard J. Stancliffe Argelander Institut für Astronomie, Universität Bonn.
Asteroseismology and the Time Domain Revolution in Astronomy Marc Pinsonneault Ohio State University Collaborators: The APOKASC team Melissa Ness Marie.
Travis Metcalfe Space Science Institute + Stellar Astrophysics Centre Probing Stellar Activity with Kepler.
First Attempt of Modelling of the COROT Main Target HD Workshop: "gamma Doradus stars in the COROT fields" /05/ Nice Mehdi – Pierre.
1. Short Introduction 1.1 Overview of helioseismology results and prospects.
Neutron Star Normal Modes Neutron Star Normal Modes LSC Meeting, Baton Rouge, March 2004 LIGO-G Z B.S. Sathyaprakash and Bernard Schutz Cardiff.
ASTR112 The Galaxy Lecture 4 Prof. John Hearnshaw 7. Globular clusters 8. Galactic rotation 8.1 From halo stars 8.2 From disk stars – Oort’s constant,
Subdwarf B stars from He white dwarf mergers Haili Hu.
Asteroseismology of Sun-like Stars
Internal dynamics from asteroseismology for two sdB pulsators residing in close binary systems Valérie Van Grootel (Laboratoire d’Astrophysique de Toulouse.
Lars Bildsten Kavli Institute for Theoretical Physics University of California Santa Barbara Hearing the Stars! Happy Birthday David!!
HD and its super-Earth Valerie Van Grootel (University of Liege, Belgium) M. Gillon (U. Liege), D. Valencia (U. Toronto), N. Madhusudhan (U. Cambridge),
Star Formation. Chapter 19 Not on this Exam – On the Next Exam!
Globular Clusters Globular clusters are clusters of stars which contain stars of various stages in their evolution. An H-R diagram for a globular cluster.
Outline – Stellar Evolution
From temporal spectra to stellar interiors (and back)
Chapter 30 Section 2 Handout
Ageing low-mass stars: from red giants to white dwarfs
Theory of solar and stellar oscillations - I
ASTEROSEISMOLOGY OF LATE STAGES OF STELLAR EVOLUTION
Presentation transcript:

Sounding the cores of stars by gravity-mode asteroseismology Valerie Van Grootel (Institut d’Astrophysique, University of Liege, Belgium) Main collaborators Les Houches February 2011 Topic of research : Astrophysics S. Charpinet (CNRS Toulouse) G. Fontaine (U. Montreal) S. Randall (ESO, Germany) P. Brassard (U. Montreal) E.M. Green (U. Arizona, USA)

Valerie Van Grootel - Les Houches, February I. What is asteroseismology ?

Valerie Van Grootel - Les Houches, February What is asteroseismology ? (“stellar seismology”) Study the interiors of stars by the interpretation of their pulsation spectra Goal : improve our knowledge of stellar interiors (stars are opaque...) What is not well known ? Global properties (mass, structure) Convection properties (core, envelope) Thermonuclear fusion properties Microphysics (opacities) Microscopic transport (gravitational settling, radiative forces) Macroscopic transport (differential rotation,magnetism, etc.)...

Valerie Van Grootel - Les Houches, February Theoretical grounds of asteroseismology From the linearized equations of hydrodynamics (small perturbations to equilibrium): Lamb and Brunt-Väisälä frequency if  2  L l 2,N 2 : p-modes (restoring force : pressure), acoustic waves if  2  L l 2,N 2 : g-modes (restoring force : buoyancy), gravity waves Oscillations are excited and propagate in some regions, and are evanescent in others Usually : p-modes sound the envelope, while g-modes propagate deep inside the stars - eigenfunction f’(r) (radial dependence) - oscillation eigenfrequency  kl (temporal dep.) - spherical harmonics Y l m (angular dep.) (f’  p, v, T,...)

Valerie Van Grootel - Les Houches, February A zoo of pulsating stars representative of different stages of evolution (from birth to “death”) Main sequence stars (H-burning) including the Sun Intermediate stages of evolution Red Giants HB stars (He-burning) Late stages of evolution White dwarfs (no burning) p- and/or g-modes, periods from min to hours (and days), amplitudes less than 1% HR (temperature-luminosity) diagram

Valerie Van Grootel - Les Houches, February What is asteroseismology ? A booming branch of astrophysics ! Launched 27 th December, 2006 CNES/ESA mission (FR/EU) Until mid-2013 Next: PLATO ? (COnvection, ROtation, and Planetary Transits) Launched 7 th March, 2009 NASA mission (USA) Until 2015

Valerie Van Grootel - Les Houches, February An illustrative example : EHB stars Asteroseismology

Valerie Van Grootel - Les Houches, February The Extreme Horizontal Branch (EHB) stars Hot (T eff ~ K) and compact stars (log g ~ 5.5) belonging to Extreme Horizontal Branch (EHB), an intermediate stage of evolution > short-periods (P ~ s), A  1%, p-modes (that sound the envelope) > long-periods (P ~ 30 min - 3 h), A  0.1%, g-modes (that sound the core) - Space observations required ! Two classes of multi-periodic EHB pulsators: I.He  C+O fusion (convective core) II.radiative He mantle III.radiative H-rich envelope (M env ~ Msun pour M * ~ 0.5 Msun) Internal structure: NB: very slow rotating stars (months) Core Envelope He/C/O core He mantle H-rich envelope log q  log (1-M(r)/M * ) -- 0

Valerie Van Grootel - Les Houches, February Kepler observations of the EHB star KPD in the range s (~30 min to 3 h) with amplitudes between 0.12% and 0.004% (!) Frequencies extraction using prewithening techniques : 45 g-type periods Fourier Transform Residual Observed Reconstructed Observations in white light photometry A typical section of the light curve Residual

Valerie Van Grootel - Les Houches, February Search the star model(s) whose theoretical periods best fit all the observed ones, in order to minimize > Results: structural and core parameters of the star (M *, M env,M core, composition, etc.) Model parameters : M *, M env, M core, and core composition X(C+O) Efficient optimization codes (based on Genetic Algorithms) are used to find the minima of S 2, i.e. the potential asteroseismic solutions Asteroseismic analysis : how does it work ? > Optimization procedure hypotheses: Search parameter space:  0.30  M * /M sun  0.70   5.0  log (M env /M * )   1.8   0.40  log (1-M core /M * )   0.10  0  X(C+O)  0.99 Under the external constraints (3-  uncertainties) from spectroscopy: T eff   810 K and log g   Core He/C/O core He mantle H-rich envelope log q  log (1-M(r)/M * ) -- 0 log (M env /M * ) log (1-M core /M * )

Valerie Van Grootel - Les Houches, February Asteroseismic analysis of KPD A clear model comes out from the optimization procedure: M *  M sun log (M env /M * )   log (1-M core /M * )   X(C+O)  0.26 ; X(He)  0.74 T eff  K log g  M * /M sun M core X(C+O) M env

Valerie Van Grootel - Les Houches, February Period fit and mode identification (extract) Excellent fit to the observed periods:  X/X~ 0.22% (or  P~ 7.8 s or  ~ 0.7  Hz, with a standard deviation of 4.6 s) Asteroseismic analysis of KPD

Valerie Van Grootel - Les Houches, February Comments on core and structural parameters Primary parameters Secondary parameters (a): from spectroscopy (b): from asteroseismology (a) (b) Excellent consistency with spectroscopic estimates (which was not guaranteed a priori!) Close to canonical value expected for EHBs Rather thick envelope Asteroseismic analysis of KPD Very little and luminous star Power of asteroseismology !

Valerie Van Grootel - Les Houches, February Comments on core and structural parameters This is the first time we can probe the core of EHB stars from asteroseismology ! Size of convective core from Schwarzschild criterion (convection theory): log q ~ signature of transport of (C+O) beyond the convection zone itself -- 0 H-rich envelope (He/H boundary) He mantle He/C/O core log q  log (1-M(r)/M * ) (C/O/He-He boundary) Asteroseismic analysis of KPD overshooting ? and/or semi-convection ? other? (differential rotation ?) A way to constrain parameters of convection theories...

Valerie Van Grootel - Les Houches, February Conclusion and Prospects Still tons of data from CoRoT and Kepler, which are waiting for seismic modeling… Kepler observations with -month and -year baseline Determination of the rotation properties and core dynamics (single and binary stars) Improve statistics (to date: 14 EHB stars modeled by seismology) Currently also huge progress for other pulsating stars (solar-like pulsators, red giants)... Conclusion: Thanks to g-mode seismology, we have access to Prospects: Global parameters of the star (mass, radius, luminosity, etc.) Structural and core parameters (M env, M core, core composition, etc) Constraints for convection, stellar formation & evolution theories...

Valerie Van Grootel - Les Houches, February Brunt-Vaisala frequency profile Core Envelope He/C/O core He mantle H-rich envelope log q  log (1-M(r)/M * ) -- 0 centersurface