History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR) C.Carilli (NRAO) CfA Sept.

Slides:



Advertisements
Similar presentations
Probing the End of Reionization with High-redshift Quasars Xiaohui Fan University of Arizona Mar 18, 2005, Shanghai Collaborators: Becker, Gunn, Lupton,
Advertisements

Cosmic reionization and the history of the neutral intergalactic medium MAGPOP Summer School, Kloster Seeon Chris Carilli, NRAO, August 10, 2007  Introduction:
The Highest-Redshift Quasars and the End of Cosmic Dark Ages Xiaohui Fan Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,
First Stars, Quasars, and the Epoch of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Instituto de Astrofísica.
21cm Lines and Dark Ages Naoshi Sugiyama Department of Physics and Astrophysics Nagoya University Furlanetto & Briggs astro-ph/ , Zaldarriaga et.
ESO Recent Results on Reionization Chris Carilli (NRAO) Dakota/Berkeley,August 2011 CO intensity mapping during reionization: signal in 3 easy steps Recent.
End of Cosmic Dark Ages: Observational Probes of Reionization History Xiaohui Fan University of Arizona New Views Conference, Dec 12, 2005 Collaborators:
ESO Recent Results on Reionization Chris Carilli (NRAO) LANL Cosmology School, July 2011 Review: constraints on IGM during reionization  CMB large scale.
Molecular gas in the z~6 quasar host galaxies Ran Wang National Radio Astronomy Observatory Steward Observatory, University of Atrizona Collaborators:
HI 21cm Signal from Cosmic Reionization IAU 2006, Long Wavelength Astrophysics Chris Carilli (NRAO) Ionized Neutral Reionized.
Cosmic reionization: The last frontier in observational cosmology Chris Carilli (NRAO) Notre Dame, March 31, 2010  Brief introduction to cosmic reionization.
Epoch of Reionization Tomography with the CSO Wide-field C+ spectral mapping and correlation with HI Matt Bradford CSO NSF visit: October 12, 2011 CSO.
Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing.
Cosmology with the 21 cm Transition Steve Furlanetto Yale University September 25, 2006 Steve Furlanetto Yale University September 25, 2006.
Cosmic reionization: The last frontier in observational cosmology Chris Carilli (NRAO) Summer Student Lecture July 2010  Brief introduction to cosmic.
Radio astronomical probes of Cosmic Reionization and the 1 st luminous objects Chris Carilli, NRL, April 2008  Brief introduction to cosmic reionization.
History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR)
Moscow cm Cosmology Collaborators: Collaborators: Rennan Barkana, Stuart Wyithe, Matias Zaldarriaga Avi Loeb Harvard University.
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
130 cMpc ~ 1 o z = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI 21cm.
Cosmic Reionization Chris Carilli (M/NRAO) Vatican Summer School June 2014 I. Introduction: Cosmic Reionization  Concept  Cool gas in z > 6 galaxies:
SKA in context z=8 Fields of View 1deg^2 With Full Sensitivity at subarcsec resolution.
Epoch of Reionization last phase of cosmic evolution to be explored bench-mark in cosmic structure formation indicating the first luminous structures Cosmic.
Cosmic reionization and the history of the neutral intergalactic medium LANL Chris Carilli May 23, 2007  Current constraints on the IGM neutral fraction.
Radio observations of massive galaxy and black hole formation in the early Universe Chris Carilli (NRAO) MPIA, Heidelberg, Aug 7, 2009  Introductory remarks.
Ionized Neutral Reionized Update: HI 21cm cosmic reionization experiments Chris Carilli (NRAO) MPIA July 2008 Last phase of cosmic evolution to be explored.
21 cm Reionization Forecast and Search at GMRT
Studying the gas, dust, and star formation in the first galaxies at cm and mm wavelengths Chris Carilli, KIAA-PKU reionization workshop, July 2008  QSO.
1 National Radio Astronomy Observatory – Town Hall AAS 211 th Meeting – Austin, Texas Science Synergies with NRAO Telescopes Chris Carill NRAO.
Radio astronomical probes of Cosmic Reionization and the 1 st luminous objects Chris Carilli April 3, 2007 MIT  Brief introduction to cosmic reionization.
SMA [CII] 158um 334GHz, 20hrs BRI z=4.7 HyLIRG (10 13 L o ) pair: Quasar host Obscured SMG SFR ~ 10 3 ; M H2 ~ Iono ea 2007 Salome ea
SMA [CII] 158um 334GHz, 20hrs BRI z=4.7 Quasar-SMG pair Both HyLIRG Both detected in CO Iono ea 2007 Omont ea ”4” HST 814 Hu ea 96.
Probing the neutral intergalactic medium during cosmic reionization using the 21cm line of hydrogen KIAA-PKU Summer School, Beijing, China Chris Carilli,
Future Science at cm wavelengths, Chicago II, Aug 2006, C.Carilli Major efforts: EVLA I+II, ATA… Three year process: Quantified ‘experiments’ for future.
Molecular Gas (Excitation) at High Redshift Fabian Walter Max Planck Institute for Astronomy Heidelberg Fabian Walter Max Planck Institute for Astronomy.
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR) C.Carilli (NRAO) Cool Univ.
Elizabeth Stanway - Obergurgl, December 2009 Lyman Break Galaxies as Markers for Large Scale Structure at z=5 Elizabeth Stanway University of Bristol With.
Massive galaxy (and black hole) formation in the early Universe Chris Carilli (NRAO) Berkeley, February 10, 2009  Intro: telescopes, techniques, massive.
From Avi Loeb reionization. Quest to the Highest Redshift.
ALMA: Imaging the cold Universe Great observatories May 2006 C. Carilli (NRAO) National Research Council Canada.
Radio astronomical probes of the 1 st galaxies Chris Carilli, Aspen, February 2008  Current State-of-the-Art: gas, dust, star formation in QSO host galaxies.
C.Carilli, AUI Board October 2006 ISAC-run three year process: Quantified ‘experiments’ for future large area cm telescopes 50 chapters, 90 authors, 25%
ESO Radio observations of the formation of the first galaxies and supermassive black holes Chris Carilli (NRAO) Keck Institute, August 2010 Current State-of-Art:
Lyman Alpha Spheres from the First Stars observed in 21 cm Xuelei Chen (Beijing) Jordi Miralda Escudé (IEEC, Barcelona).
Probing the dark ages with a lunar radio telescope Chris Carilli, Feb 2008 Dark Ages 15 < z < 200 Reionization 6 < z < 15 last phase of cosmic evolution.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Santa Fe Chris Carilli July 17, 2007
The Evolution of Galaxies: From the Local Group to the Epoch of Reionization Fabian Walter National Radio Astronomy Observatory.
Cosmic ‘Background’Radiation Franceschini The Gunn Peterson Effect Fan et al 2003 z=6.3 z=5.80 z=5.82 z=5.99 z=6.28 Cosmic reionization at z =6.3.
The Dark Age and Cosmology Xuelei Chen ( 陈学雷 ) National Astronomical Observarories of China The 2nd Sino-French Workshop on the Dark Universe, Aug 31st.
Warm Dust in the Most Distant Quasars Ran Wang Department of Astronomy, Peking University, China.
The M BH -  star relation at the highest redshifts Fabian Walter (MPIA)
What is EVLA? Giant steps to the SKA-high ParameterVLAEVLAFactor Point Source Sensitivity (1- , 12 hr.)10  Jy1  Jy 10 Maximum BW in each polarization0.1.
ESO Radio observations of the formation of the first galaxies and supermassive Black Holes Chris Carilli (NRAO) Notre Dame Astrophysics March 30, 2010.
ESO The other side of galaxy formation: radio line and continuum ‘Great Surveys’ Santa Fe November 2008 Chris Carilli NRAO.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR) C.Carilli (NRAO) NNIW Dec.
Radio observations of massive galaxy and black hole formation in the early Universe Chris Carilli (NRAO) MPE, Garching, July 16, 2009  Introductory remarks.
ALMA studies of the first galaxies
SKA KSP: probing cosmic reionization and the first galaxies
Giant Clouds and Star Clusters in the Antennae
HI 21cm Tomography of IGM: freq ~ 100 to 200 MHz
C.Carilli (NRAO) Heidelberg 05
A Proposed VLA Band MHz Pathfinder Study for the EOR L
Dense gas history of the Universe  Tracing the fuel for galaxy formation over cosmic time SF Law SFR Millennium Simulations, Obreschkow & Rawlings 2009;
Evolution of radio telescopes (Braun 1996)
Recovery of The Signal from the Epoch of Reionization
Observing Molecules in the EoR
ALMA: Resolving (optically) obscured galaxy formation
Presentation transcript:

History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR) C.Carilli (NRAO) CfA Sept 2004 ionized neutral ionized

z=5.80 z=5.82 z=5.99 z=6.28 The Gunn Peterson Effect Fan et al 2003 Fast reionization at z =6.3 => opaque at _obs <0.9  m f(HI) > at z = 6.3

Neutral IGM evolution (Gnedin 2000): ‘Cosmic Phase transition’ at z=6 to 7 Log (HI fraction) DensityGas Temp Ionizing intensity Normalization: GP absorption, LCDM + z=4 LBGs, T _IGM 8 Mpc (comoving)

Thompson scattering at EoR   e = 0.17 => F(HI) < 0.5 at z=17 Extended period of reionization: z=6 to 15? WMAP Large scale polarization of CMB (Kogut et al.) 20deg

Fan et al Near-edge of reionization: GP Effect Fairly Fast: f(HI) > 1e-3 at z >= 6.4 (0.87Gyr) f(HI) < 1e-4 at z <= 5.7 (1.0 Gyr)

Complex reionization example: Double reionization? (Cen 2002) Pop III stars in ‘mini-halos’ (<1e7 M _sun) ‘normal’ galaxies (>1e8M _sun)

Limitations of current measurements: CMB polarization: --  _e = Ln _e   e = integral measure through universe => allows many reionization scenarios Gunn-Peterson effect: --  _Lya >>1 for f(HI)> High z universe is opaque to optical observers

Radio astronomical probes of the Epoch of Reionization and the 1 st luminous objects 1.CMB large scale polarization 2.Objects within EoR – Molecular gas, dust, star formation 3.Neutral IGM – HI 21cm emission and absorption Collaborators USA – Carilli, Walter, Fan, Strauss, Owen, Gnedin Euro – Bertoldi, Cox, Menten, Omont, Beelen SKA Key Program science team– Briggs, Carilli, Furlanetto, Rawlings Science with the Square Kilometer Array (NAR, Carilli & Rawlings)

 IRAM 30m + MAMBO: sub-mJy sens at 250 GHz + wide fields  IRAM PdBI: sub-mJy sens at 90 and 230 GHz + arcsec resol.  VLA: uJy sens at 1.4 GHz  VLA: < 0.1 mJy sens at GHz + 0.2” resol.

Magic of (sub)mm L _FIR = 4e12 x S _250 (mJy) L _sun for z=0.5 to 8

SDSS + DPOSS: 700 at z > 4 30 at z > 5 9 at z > 6 M _B L _bol > 1e14 L _sun M _BH > 1e9 M _sun York et al 2001; Fan et al High redshift QSOs

QSO host galaxies – M _BH –  relation Most (all?) low z spheroidal galaxies have SMBH M _BH = M _bulge  ‘Causal connection between SMBH and spheroidal galaxy formation’ (Gebhardt et al. 2002)?  Luminous high z QSOs have massive host galaxies (1e12 M _sun )

30% of luminous QSOs have S _250 > 2 mJy, independent of redshift from z=1.5 to 6.4 L _FIR =1e13 L _sun = 0.1 x L _bol : Dust heating by starburst or AGN? MAMBO surveys of z>2 DPSS+SDSS QSOs z= z=6.2 1e13L _sun Arp220

L _FIR vs L’(CO)  M(H_2) = X * L’(CO), X=4 (Milkyway), X=0.8 (ULIRGs)  Telescope time: t(dust) = 1hr, t(CO) = 10hr Index=1.7 Index=1 1e11 M_sun 1e3 M _sun /yr High-z sources

highest redshift quasar known L _bol = 1e14 L _sun central black hole: 1-5 x 10 9 M sun ( Willot etal.) clear Gunn Peterson trough (Fan etal.) Objects within EoR: QSO at z=6.4

z=6.42: MAMBO detection S _250 = 5.0 +/- 0.6 mJy => L _FIR = 1.2e13 L _sun, M _dust =7e8 M _sun  3’

VLA Detection of Molecular Gas at z= GHz CO 3-2 Off channels 50 MHz ‘channels’ (320 kms -1,  z=0.008) noise: ~57  Jy, D array, 1.5” beam  M(H _2 ) = 2e10 M _sun  Size < 1.5” (image),  Size > 0.2” (T _B /50K)^-1/2

IRAM Plateau de Bure confirmation FWHM = 305 km/s z = /  (3-2) (7-6) (6-5) T kin =100K, n H2 =10 5 cm -3 Typical of starburst nucleus

VLA imaging of CO3-2 at 0.4” and 0.15” resolution  Separation = 0.3” = 1.7 kpc  T _B = 20K = T _B (starburst )  Merging galaxies?  Or Dissociation by QSO? rms=50uJy at 47GHz  CO extended to NW by 1” (=5.5 kpc) tidal(?) feature

Phase stability: Fast switching at the VLA 10km baseline rms = 10deg

: radio-FIR SED  Star forming galaxy characteristics: radio-FIR SED, L’ _CO /FIR, CO excitation and T _B => Coeval starburst/AGN: SFR = 1000 M _sun /yr  Stellar spheroid formation in few e7 yrs = e-folding time for SMBH => Coeval formation of galaxy/SMBH at z = 6.4 ? S _1.4 = 55 +/- 12 uJy Beelen et al. T _D = 50 K

M( dust ) = 7e8 M _sun M( H _2 ) = 2e10 M _sun M _dyn (r=2.5kpc) = 5e10 M _sun M _BH = 3e9 M _sun => M _bulge = 1.5e12 M _sun Gas/dust = 30, typical of starburst Dynamical vs. gas mass => baryon dominated? Dynamical vs. ‘bulge’ mass => M –  breaks-down at high z? : Masses

Cosmic (proper) time  T _univ = 0.87Gyr

Age of universe: 8.7e8 yr C, O production (3e7 M _sun ): 1e8 yr Fe production (SNe Ia): few e8 yr (Maiolino, Freudling) Dust formation: 1.4e9yr (AGB winds) => dust formed in high mass stars/SNR (Dunne et al ) ? => silicate grains? => Star formation started early (z > 10)?  Timescales

Cosmic Stromgren Sphere Accurate redshift from CO: z=6.419+/0.001 Ly a, high ioniz. Lines: uncertainty >1000km/s (  z=0.03) Proximity effect: photons leaking from 6.32<z<6.419 z=6.32 ‘time bounded’ Stromgren sphere: R = 4.7 Mpc t _qso = 1e5 R^3 f(HI)= 1e7yrs White et al. 2003

Richards et al SDSS QSOs

Loeb & Rybicki 2000

Constraints on neutral fraction at z=6.4  GP => f(HI) >  If f(HI) = 0.001, then t _qso = 1e4 yrs – implausibly short given fiducial lifetime, f _lt = 1e7 years?  Probability arguments suggest: f(HI) > 0.1 at z=6.4 – much better limit than GP Wyithe and Loeb 2003

z>6 QSOs with MgII and/or CO redshifts (Walter et al, Willot et al., Maiolino et al., = 0.08 => = 4.4 Mpc

Near-edge of reionization: GP + Cosmic Stromgren Spheres Very Fast? f(HI) > 1e-1 at z >= 6.4 (0.87Gyr) f(HI) < 1e-4 at z <= 5.7 (1.0 Gyr) See also Cosmic Stromgren Surfaces (Mesinger & Haiman 2004)

Gas and dust during the EoR FIR luminous galaxy at z=6.42: 1e13 L sun observe dust, gas, star formation, AGN Merging(?) galaxy: Molecular gas mass = 2x10 10 M _sun, M _dyn = 6e10 M _sun Early enrichment of heavy elements and dust produced in the first stars => star formation commenced at 0.4 Gyr after the big bang Coeval formation of SMBH + stars in earliest galaxies – break-down of M-  at high z? Cosmic Stromgren sphere of 4.7 Mpc => ‘witnessing process of reionization’ t _qso = 1e7 * f(HI) yrs ‘fast’ reionization: f(HI)>0.1 at z=6.4?

J : A second FIR-luminous QSO source at z=6.2 S _250 = 3.0 +/- 0.4 mJy => L _FIR = 7.5e12 L _sun z(MgII)  S(CO 3-2) = / mJy  EVLA correlator: 8GHz, channels z(opt) MAMBO 250 GHzVLA CO 3-2

VLA detections of HCN 1-0 emission n(H _2 ) > 1e5 cm^-3 (vs. CO: n(H _2 ) > 1e3 cm^-3) z=2.58 Solomon et al index=1 z=4.7 z= uJy

Continuum sensitivity of future arrays: Arp 220 vs z (FIR = 1.6e12 L _sun ) cm: Star formation, AGN (sub)mm Dust, molecular gas Near-IR: Stars, ionized gas, AGN ConX: AGN

Studying the pristine IGM beyond the EOR: redshifted HI 21cm observations (100 – 200 MHz) with the Square Kilometer Array. ‘Pathfinders’: LOFAR, MWA, PAST, VLA-VHF,… SKA goal:  Jy at 200 MHz Large scale structure: density, f(HI), T _spin

Low frequency background – hot, confused sky Eberg 408 MHz Image (Haslam ) Coldest regions: T = 100  z)^2.6 K Highly ‘confused’: 3 sources/arcmin^2 with S _0.2 > 0.1 mJy

Terrestrial interference 100 MHz z= MHz z=6

Temperatures: Spin, CMB, Kinetic and the 21cm signal Initially T _S = T _CMB T _S couples to T _K via Lya scattering T _K = (1+z)^2 (wo. heating) T _CMB = 2.73 (1+z) T _S = T _CMB => no signal T _S = T _K Absorption against CMB T _S > T _CMB => Emission T _K T _CMB T _s Tozzi z = 11z = 7  t = 10mK

Global reionization signature in low frequency HI spectra (Gnedin & Shaver 2003) double fast 21cm ‘deviations’ at 1e-4 wrt foreground Spectral index deviations of 0.001

HI 21cm Tomography of IGM Zaldarriaga z=   T _B (2’) = 10’s mK  SKA rms(100hr) = 4mK  LOFAR rms (1000hr) = 80mK

Power spectrum analysis Zaldarriaga LOFAR SKA Z= MHz 2deg 1arcmin

z=3.62 Womble 1996 N(HI) = 1e e15 cm^-2, f(HI/HII) = 1e e-6 => Before reionization N(HI) =1e18 – 1e21 cm^-2 Cosmic Web after reionization = Ly alpha forest (  <= 10)

Cosmic web before reionization: HI 21cm Forest ( Carilli, Gnedin, Owen 2002) Mean optical depth (z = 10) = 1% = ‘Radio Gunn- Peterson effect’ Narrow lines (  = few %, few km/s) = HI 21cm forest (  <= 10), 10/unit z at z=8 Mini-halos (  = 100) (Furlanetto & Loeb 2003) Primordial disks: low cosmic density=0.001/unit z, but high opacity=> fainter radio sources -- GRBs? Radio sources beyond the EOR? Radio loud QSO fraction = 10% to z=5.8 (Petric ) Models => expect 0.05 to 0.5 deg^-2 at z> 6 with S _151 > 6 mJy, out of 100 total (Carlli,Jarvis,Haiman) Z=10 20mJy Z=8

GMRT 228 MHz search for HI21cm abs toward highest z radio galaxy, z=5.2 Continuum point source = 0.55 Jy; rms/(40km/s chan) = 5 mJy z(CO) 230Mhz 8GHz 1” Van Breugel et al.

GMRT 230 MHz z=5.2 channel 20 (229.60MHz)

‘Pathfinders’: PAST, LOFAR, MWA, VLA-VHF, … MWA prototype (MIT/ANU) LOFAR (NL) PAST (CMU/China)VLA-VHF (CfA/NRAO)

VLA-VHF: 180 – 200 MHz Prime focus X-dipole (Greenhill et al – proposed) Leverage: existing telescopes, IF, correlator, operations

Main Experiment: Cosmic Stromgren spheres around z>6 SDSS QSOs (Wyithe & Loeb 2004) VLA spectral/spatial resolution well matched to expected signal: 5’, 1000 km/s VLA-VHF 190MHz 250hrs 15’ 20mK 0.50+/-0.12 mJy

Other Experiments: power spectrum analysis, ‘HI 21cm forest’  Sensitivity per 0.8MHz channel: currently have 16 channels over 12.5 MHz  Piggy-back on CSS experiment  Centrally condensed uv coverage

System/Site characteristics Work hours TV carrier Proposed band First sidelobe = 15db

Challenges and ‘mitigation’: VLA-VHF CSS  Ionospheric phase errors – higher freq (freq^-2); 4deg FoV; 1km B _max  T _bg – higher freq (freq^-2.75)  Confusion (in-beam) – spectral measurement (eg. Morales & Hewitt 2004); mJy point source removal w. A array; precise position and redshift  Wide field problems – polarization, sidelobes, bandpass – all chromatic ?  RFI – “interferometric excision” (but D array); consistently ‘clean’ times in monitor plots (but very insensitive measure) ? Proposed Cost and Timeline  100K in parts (CfA) + labor (CfA/NRAO)  First tests (4 prototypes): Q1, Q  First experiments ( hr): D array, Q  Large proposal (500 hr): D array, Q1 2007

Radio astronomy – Probing the EoR Study physics of the first luminous sources (limited to near-IR to radio wavelengths) Currently limited to pathological systems (‘HLIRGs’) EVLA, ALMA x sensitivity is critical to study normal galaxies Low freq pathfinders: HI 21cm signatures of neutral IGM SKA imaging of IGM z 