1 Combustion in CI Engine In a CI engine the fuel is sprayed directly into the cylinder and the fuel-air mixture ignites spontaneously. These photos are.

Slides:



Advertisements
Similar presentations
Ideal Intake and Exhaust Strokes
Advertisements

Engine Geometry BC L TC l VC s a q B
Combustion Fundamentals Presentation Outline
Four Stroke SI Engine Stroke 1: Fuel-air mixture introduced into cylinder through intake valve Stroke 2: Fuel-air mixture compressed.
Combustion Chamber Design
Fuel Injection System Dr Jehad Yamin.
Vigyan Ashram, Pabal. In this presentation you will learn : – What is IC engine? – How it works? – Where it is used?
Combustion in CI Engine
Dr. Fatma Ashour.  The term ‘diesel fuels’ comprises Gas Oil’ (Solar) o Diesel Oil Both fractions are heavy distillates obtained from crude oil.  The.
FUELS DEPARTMENT OF AUTOMOBILE ENGINEERING RENGI KURIAN VARGHESE S6 AUE ROLL NO:46.
Performance of Ignition Process P M V Subbarao Professor Mechanical Engineering Department Effectiveness of Ignition for Efficient Combustion …..
Flame Propagation in SI Engine
Principles of the Compression Engine
GAS POWER CYCLES Chapter 9. Introduction Two important areas of application for thermodynamics are power generation and refrigeration. Two important areas.
1 [Translation: In the name of Allah, the Most Merciful, the Most Kind.]
Seminar On Gasoline Direct Injection
AE 412 THERMODYNAMIC CYCLE SIMULATION II Prof.Dr. Demir Bayka.
Internal Combustion Engine Testing
Analysis of In-Cylinder Process in Diesel Engines P M V Subbarao Professor Mechanical Engineering Department Sudden Creation of Young Flame & Gradual.
Chapter 14 Chemical reactions
Chapter 15 Chemical reactions.  Any material that can be burned to release thermal energy is called a fuel.  Most familiar fuels consist primarily of.
Thermodynamic Analysis of Internal Combustion Engines P M V SUBBARAO Professor Mechanical Engineering Department IIT Delhi Work on A Blue Print Before.
Models for Design & Selection of Injection System P M V Subbarao Professor Mechanical Engineering Department Mathematical Tools for Sizing of Hard Ware.
Analysis of Fuel Injection & Related Processes in Diesel Engines
Strategies to Achieve A Fast Cycle with High & Safe Peak Pressure in SI Engines P M V Subbarao Professor Mechanical Engineering Department Fuel Economy.
Analysis & Control of Knock in SI Engines P M V Subbarao Professor Mechanical Engineering Department Measures to Avoid Uncontrollable Combustion….
Properties of Fuels.
Design & Thermo Chemistry of Turbo Combustor P M V Subbarao Professor Mechanical Engineering Department Design for performance, safety and Reliability…..
CHAPTER 4. COMPRESSION Compression is required to prepare the charge for ignition. Compressing the air-fuel mixture allows more energy to be released.
Nature of Heat Release Rate in an Engine
FIRES AND EXPLOSION LECTURE 10.
“DIESEL ENGINE” A SUMMER TRAINING PRESENTATION ON
Design & Analysis of Combustion System for Diesel Engines P M V Subbarao Professor Mechanical Engineering Department Means & Methods to Promote Matured.
ICAT, November
Auto Ignition, Premixed & Diffusive Combustion in CI Engines
Compression Ignition Engines
Shaping the Future Diesel Engine Combustion and Heat Release.
Power Plant Engineering
MODREN INSTITUTE OF TECHNOLOGY & RESEARCH CENTRE VIPIN KUMAR YADAV.
The Chemistry of Fuel Combustion in SI Engines P M V Subbarao Professor Mechanical Engineering Department Exploit the Chemical Characteristics of Combustion?!?!
Combustion in CI Engines
Unit 61: Engineering Thermodynamics Lesson 12: Combustion Engines.
Combustion in Diesel Engines P M V Subbarao Professor Mechanical Engineering Department Special Behavioral Issues of Teen Combustion ….
COMBUSTION IN C.I. ENGINE
1.  IC engine in which air-fuel ratio isn't equal throughout the cylinder.  Rich mixture is provided close to the spark plug and combustion promotes.
Direct Injection Engine • Direct-Injection (DI) or Open Chamber Engine: In this design, the fuel is injected directly into the cylinder chamber. Direct.
TYPES OF COMBUSTION CHAMBERS - CI Engines
Cumbustion Chamber Manish K.MISTRY [ ]
Abnormal Combustion in Spark Ignition Engines
Engine Design and Operating Parameters
Analysis & Control of Knock in SI Engines
A. Diesel cycle : The ideal cycle for CI engines
A Review by: Ritwik Athalye April 28th, 2015
Unit 61: Engineering Thermodynamics
SPARK IGNITION ENGINES
PHENOMENON OF KNOCK IN SI ENGINE BY : MOHAMMAD JOMA’A Ala’a Z Allan.
HEAT RELEASE in single injection compression ignition engine
Analysis of Abnormal Combustion in SI Engines
COMPRESSION IGNITION ENGINES
CI-DI I C Engines for Automobiles
Enhanced Activities due to In Cylinder Turbulence
SI Engine Cycle Actual Cycle Intake Stroke Compression Power Exhaust
Ch. 10 Heat Transfer in Engines
P M V Subbarao Professor Mechanical Engineering Department
20th Century CI-DI I C Engines for Automobiles
Flame Propagation in SI Engine After intake the fuel-air mixture is compressed and then ignited by a spark plug just before the piston reaches top center.
Post Injection Processes in Diesel Engines
Combustion in S.I. Engine
CIET,LAM,DEPARTMENT OF MECHANICAL ENGINEERING
Thermodynamic Analysis of Internal Combustion Engines
Presentation transcript:

1 Combustion in CI Engine In a CI engine the fuel is sprayed directly into the cylinder and the fuel-air mixture ignites spontaneously. These photos are taken in a RCM under CI engine conditions with swirl air flow 0.4 ms after ignition3.2 ms after ignition Late in combustion process 1 cm

2 In Cylinder Measurements This graph shows the fuel injection flow rate, net heat release rate and cylinder pressure for a direct injection CI engine. Start of injection Start of combustion End of injection

3 Combustion in CI Engine The combustion process proceeds by the following stages: Ignition delay (ab) - fuel is injected directly into the cylinder towards the end of the compression stroke. The liquid fuel atomizes into small drops and penetrates into the combustion chamber. The fuel vaporizes and mixes with the high-temperature high-pressure air. Premixed combustion phase (bc) – combustion of the fuel which has mixed with the air to within the flammability limits (air at high-temperature and high- pressure) during the ignition delay period occurs rapidly in a few crank angles. Mixing controlled combustion phase (cd) – after premixed gas consumed, the burning rate is controlled by the rate at which mixture becomes available for burning. The rate of burning is controlled in this phase primarily by the fuel-air mixing process. Late combustion phase (de) – heat release may proceed at a lower rate well into the expansion stroke (no additional fuel injected during this phase). Combustion of any unburned liquid fuel and soot is responsible for this.

4 Four Stages of Combustion in CI Engines Start of injection End of injecction -10TC

5 CI Engine Types Two basic categories of CI engines: i)Direct-injection – have a single open combustion chamber into which fuel is injected directly ii)Indirect-injection – chamber is divided into two regions and the fuel is injected into the “prechamber” which is connected to the main chamber via a nozzle, or one or more orifices. For very-large engines (stationary power generation) which operate at low engine speeds the time available for mixing is long so a direct injection quiescent chamber type is used (open or shallow bowl in piston). As engine size decreases and engine speed increases, increasing amounts of swirl are used to achieve fuel-air mixing (deep bowl in piston) For small high-speed engines used in automobiles chamber swirl is not sufficient, indirect injection is used where high swirl or turbulence is generated in the pre-chamber during compression and products/fuel blowdown and mix with main chamber air.

6 Ignition Delay Ignition delay is defined as the time (or crank angle interval) from when the fuel injection starts to the onset of combustion. Both physical and chemical processes must take place before a significant fraction of the chemical energy of the injected liquid is released. Physical processes are fuel spray atomization, evaporation and mixing of fuel vapour with cylinder air. Good atomization requires high fuel-injection pressure, small injector hole diam., optimum fuel viscosity, high cylinder pressure (large divergence angle). Rate of vaporization of the fuel droplets depends on droplet diameter, velocity, fuel volatility, pressure and temperature of the air. Chemical processes similar to that described for autoignition phenomenon in premixed fuel-air, only more complex since heterogeneous reactions (reactions occurring on the liquid fuel drop surface) also occur.

7 Fuel Ignition Quality The ignition characteristics of the fuel affect the ignition delay. The ignition quality of a fuel is defined by its cetane number CN. For low cetane fuels the ignition delay is long and most of the fuel is injected before autoignition and rapidly burns, under extreme cases this produces an audible knocking sound referred to as “diesel knock”. For high cetane fuels the ignition delay is short and very little fuel is injected before autoignition, the heat release rate is controlled by the rate of fuel injection and fuel-air mixing – smoother engine operation.

8 Cetane Number The method used to determine the ignition quality in terms of CN is analogous to that used for determining the antiknock quality using the ON. The cetane number scale is defined by blends of two pure hydrocarbon reference fuels. By definition, isocetane (heptamethylnonane, HMN) has a cetane number of 15 and cetane (n-hexadecane, C 16 H 34 ) has a value of 100. In the original procedures  -methylnaphtalene (C 11 H 10 ) with a cetane number of zero represented the bottom of the scale. This has since been replaced by HMN which is a more stable compound. The higher the CN the better the ignition quality, i.e., shorter ignition delay. The cetane number is given by: CN = (% hexadecane) (% HMN)

9 Factors Affecting Ignition Delay Injection timing – At normal engine conditions the minimum delay occurs with the start of injection at about BTC. The increase in the delay time with earlier or later injection timing occurs because of the air temperature and pressure during the delay period. Injection quantity – For a CI engine the air is not throttled so the load is varied by changing the amount of fuel injected. Increasing the load (bmep) increases the residual gas and wall temperature which results in a higher charge temperature at injection which translates to a decrease in the ignition delay. Intake air temperature and pressure – an increase in ether will result in a decrease in the ignition delay, an increase in the compression ratio has the same effect.

Flame Development Mass fraction burned Flame development angle  d – crank angle interval during which flame kernal develops after spark ignition. Rapid burning angle  b – crank angle required to burn most of mixture Overall burning angle - sum of flame development and rapid burning angles

11 Spark Timing Spark timing relative to TC affects the pressure development and thus the imep and power of the engine. Want to ignite the gas before TC so as to center the combustion around TC. The overall burning angle is typically between 40 to 60 o, depending on engine speed. Engine at WOT, constant engine speed and A/F motored

Abnormal Combustion in SI Engine Knock is the term used to describe a pinging noise emitted from a SI engine undergoing abnormal combustion. The noise is generated by shock waves produced in the cylinder when unburned gas ahead of the flame auto-ignites.

Knock As the flame propagates away from the spark plug the pressure and temperature of the unburned gas increases. Under certain conditions the end-gas can autoignite and burn very rapidly producing a shock wave The end-gas autoignites after a certain induction time which is dictated by the chemical kinetics of the fuel-air mixture. If the flame burns all the fresh gas before autoignition in the end-gas can occur then knock is avoided. Therefore knock is a potential problem when the burn time is long! shock P,T time P,T end-gas flame

i) Compression ratio – at high compression ratios, even before spark ignition, the fuel-air mixture is compressed to a high pressure and temperature which promotes autoignition ii) Engine speed – At low engine speeds the flame velocity is slow and thus the burn time is long, this results in more time for autoignition However at high engine speeds there is less heat loss so the unburned gas temperature is higher which promotes autoignition These are competing effects, some engines show an increase in propensity to knock at high speeds while others don’t. iii) Spark timing – maximum compression from the piston advance occurs at TC, increasing the spark advance makes the end of combustion crank angle approach TC and thus get higher pressure and temperature in the unburned gas just before burnout. Parameters Influencing Knock

Fuel Knock Scale To provide a standard measure of a fuel’s ability to resist knock, a scale has been devised in which fuels are assigned an octane number ON. The octane number determines whether or not a fuel will knock in a given engine under given operating conditions. By definition, normal heptane (n-C 7 H 16 ) has an octane value of zero and isooctane (C 8 H 18 ) has a value of 100. The higher the octane number, the higher the resistance to knock. Blends of these two hydrocarbons define the knock resistance of intermediate octane numbers: e.g., a blend of 10% n-heptane and 90% isooctane has an octane number of 90. A fuel’s octane number is determined by measuring what blend of these two hydrocarbons matches the test fuel’s knock resistance.

Octane Number Measurement Note the motor octane number is always higher because it uses more severe operating conditions: higher inlet temperature and more spark advance. The automobile manufacturer will specify the minimum fuel ON that will resist knock throughout the engine’s operating speed and load range.