MIT Plasma Science and Fusion Center Fusion Technology & Engineering Division J.H. Schultz M.I.T. Plasma Science and Fusion Center NSO PAC 2 Meeting M.I.T.

Slides:



Advertisements
Similar presentations
Application of the Root-Locus Method to the Design and Sensitivity Analysis of Closed-Loop Thermoacoustic Engines C Mark Johnson.
Advertisements

Performance, Energy and Thermal Considerations of SMT and CMP architectures Yingmin Li, David Brooks, Zhigang Hu, Kevin Skadron Dept. of Computer Science,
INTRODUCTION TO Machine Learning 2nd Edition
Reveals functional relation between factors of input and output.
Stability, Transport, and Conrol for the discussion Y. Miura IEA/LT Workshop (W59) combined with DOE/JAERI Technical Planning of Tokamak Experiments (FP1-2)
September 24-25, 2003 HAPL meeting, UW, Madison 1 Armor Configuration & Thermal Analysis 1.Parametric analysis in support of system studies 2.Preliminary.
1 Single-cycle mixed-fluid LNG (PRICO) process Part I: Optimal design Sigurd Skogestad & Jørgen Bauck Jensen Quatar, January 2009.
MIT Plasma Science and Fusion Center Fusion Technology & Engineering Division J.H. Schultz, P. Titus, J.V. Minervini M.I.T. Plasma Science and Fusion Center.
Modeling Generation and Nonlinear Evolution of VLF Waves for Space Applications W.A. Scales Center of Space Science and Engineering Research Virginia Tech.
January 8-10, 2003/ARR 1 Plan for Engineering Study of ARIES-CS Presented by A. R. Raffray University of California, San Diego ARIES Meeting UCSD San.
R Sartori - page 1 20 th IAEA Conference – Vilamoura Scaling Studies of ELMy H-modes global and pedestal confinement at high triangularity in JET R Sartori.
1 RAL + Front End Studies International Design Study David Neuffer FNAL (January 5, 2009)
IAEA - FEC2004 // Vilamoura // // EX/4-5 // A. Staebler – 1 – A. Staebler, A.C.C Sips, M. Brambilla, R. Bilato, R. Dux, O. Gruber, J. Hobirk,
Development of the New ARIES Tokamak Systems Code Zoran Dragojlovic, Rene Raffray, Farrokh Najmabadi, Charles Kessel, Lester Waganer US-Japan Workshop.
HTS Magnets for ARIES-AT L. Bromberg J.H. Schultz MIT Plasma Science and Fusion Center ARIES Meeting March 20, 2000.
Design of Standing-Wave Accelerator Structure
Advanced Design Activities Farrokh Najmabadi Virtual Laboratory for Technology Meeting Dec. 10, 1998 VLT PAC Meeting, UCSD.
Thermo-economic Optimization of STHE P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Minimizing capital and operating costs of shell.
Prof. F.Troyon“JET: A major scientific contribution...”25th JET Anniversary 20 May 2004 JET: A major scientific contribution to the conception and design.
Systems Modeling Update including Magnetic Deflection HAPL Program Meeting General Atomics August 8-9, 2006 Wayne Meier LLNL Work performed under the auspices.
Magnet Options for Magnetic Intervention SC Wire Characteristics (Critical Current Density: Jc) With the advent of cusp geometry for diverting ions into.
Measurement of the Plasma Driven Permeation Flux in the Spherical Tokamak QUEST S. K. Sharma 1 H. Zushi 2, I. Takagi 3, Y.Hisano 1, M. Sakamoto 2, Y. Higashizono.
J A Snipes, 6 th ITPA MHD Topical Group Meeting, Tarragona, Spain 4 – 6 July 2005 TAE Damping Rates on Alcator C-Mod Compared with Nova-K J A Snipes *,
Fusion: Bringing star power to earth Farrokh Najmabadi Prof. of Electrical Engineering Director of Center for Energy Research UC San Diego NES Grand Challenges.
Page 1 of 11 An approach for the analysis of R&D needs and facilities for fusion energy ARIES “Next Step” Planning Meeting 3 April 2007 M. S. Tillack ?
Nature of Heat Release Rate in an Engine
Combining the strengths of UMIST and The Victoria University of Manchester COMP60611 Fundamentals of Parallel and Distributed Systems Lecture 7 Scalability.
AES, ANL, Boeing, Columbia U., CTD, GA, GIT, LLNL, INEEL, MIT, ORNL, PPPL, SNL, SRS, UCLA, UCSD, UIIC, UWisc FIRE Collaboration FIRE.
AES, ANL, Boeing, Columbia U., CTD, GA, GIT, LLNL, INEEL, MIT, ORNL, PPPL, SNL, SRS, UCLA, UCSD, UIIC, UWisc FIRE Collaboration FIRE.
NSTX-U NSTX-U PAC-31 Response to Questions – Day 1 Summary of Answers Q: Maximum pulse length at 1MA, 0.75T, 1 st year parameters? –A1: Full 5 seconds.
27-March-10 LCWS10 - Beijing Global Design Effort 1 Barry Barish LCWS10 - Beijing 27-March-10 “Cost Containment” for the TDR.
Current Drive for FIRE AT-Mode T.K. Mau University of California, San Diego Workshop on Physics Issues for FIRE May 1-3, 2000 Princeton Plasma Physics.
1 Single-cycle mixed-fluid LNG (PRICO) process Part I: Optimal design Sigurd Skogestad & Jørgen Bauck Jensen Qatar, January 2009.
Fusion Fire Powers the Sun Can we make Fusion Fire on earth? National FIRE Collaboration AES, ANL, Boeing, Columbia U., CTD, GA, GIT, LLNL, INEEL, MIT,
Magnet for ARIES-CS Magnet protection Cooling of magnet structure L. Bromberg J.H. Schultz MIT Plasma Science and Fusion Center ARIES meeting UCSD January.
Emanuele Poli, 17 th Joint Workshop on ECE and ECRH Deurne, May 7-10, 2012 Assessment of ECCD-Assisted Operation in DEMO Emanuele Poli 1, Emiliano Fable.
Design Point Studies for next step device National High-heat-flux Advanced Torus Experiment NHTX C Neumeyer 6/8/6.
JT-60U -1- Access to High  p (advanced inductive) and Reversed Shear (steady state) plasmas in JT-60U S. Ide for the JT-60 Team Japan Atomic Energy Agency.
FIRE Engineering John A. Schmidt NSO PAC Meeting February 27, 2003.
Robust Design Chapter Six. Training Manual January 30, 2001 Inventory # Robust Design In this section, we will present a practical application.
MCZ Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2,
Physics Analysis and Flexibility Issues for FIRE NSO PAC-2 Meeting January 17-18, 2001 S. C. Jardin with input from C.Kessel, J.Mandrekas, D.Meade, and.
NSTX XP818: ELM mitigation w/midplane coils – SAS, JKP, RM, SG XP818: Exploratory approach to finding ELM mitigation solution with midplane non-axisymmetric.
Changes in Edge Turbulence with  * and Toroidal Rotation Input in NSTX M. Gilmore, S. Kubota, W.A. Peebles, and X.V. Nguyen Electrical Engineering Dept.,
Optimization of a High-  Steady-State Tokamak Burning Plasma Experiment Based on a High-  Steady-State Tokamak Power Plant D. M. Meade, C. Kessel, S.
FIRE Advanced Tokamak Progress C. Kessel Princeton Plasma Physics Laboratory NSO PAC 2/27-28/2003, General Atomics 1.0D Operating Space 2.PF Coils 3.Equilibrium/Stability.
LI et al. 1 G.Q. Li 1, X.Z. Gong 1, A.M. Garofalo 2, L.L. Lao 2, O. Meneghini 2, P.B. Snyder 2, Q.L. Ren 1, S.Y. Ding 1, W.F. Guo 1, J.P. Qian 1, B.N.
Interplay between confinement, turbulence and magnetic topology Nils P. Basse MIT Plasma Science and Fusion Center This proposal originates from density.
FFAG’ J. Pasternak, IC London/RAL Proton acceleration using FFAGs J. Pasternak, Imperial College, London / RAL.
Numerical Analysis – Data Fitting Hanyang University Jong-Il Park.
Compact Stellarators as Reactors J. F. Lyon, ORNL NCSX PAC meeting June 4, 1999.
Study on Plasma Startup Scenario of Helical DEMO reactor FFHR-d1
2012 Applied Superconductivity Conference, Portland, Oregon
Abstract EuSPARC and EuPRAXIA projects
Pilot Plant Study Hutch Neilson Princeton Plasma Physics Laboratory ARIES Project Meeting 19 May 2010.
RF Power Generation and PETS Design
BMW Project “Ship-to-Average“ by Matthias Pauli Thomas Drtil
21 Cost Curves.
Impact of Magnet Performance on the Physics Program of MICE
Investigation of Energetic ICRF Minority Protons on Alcator C-Mod 48th APS-DPP 10/31/2006 V. Tang*, P.T. Bonoli, J. Liptac, R.R. Parker, J.C. Wright,
משרד התעשייה, המסחר והתעסוקה פעולות המשרד לעידוד מגזר המיעוטים
Advanced Scenarios: ITER-like Hybrid at Low Bt without LH
If we increase b2 from 10 to 20 will the optimal basis change?
Investigation of triggering mechanisms for internal transport barriers in Alcator C-Mod K. Zhurovich C. Fiore, D. Ernst, P. Bonoli, M. Greenwald, A. Hubbard,
optimal basis will not change
Proposal #3: Expand ITER rampdown cases
optimal basis will not change
Ioffe Institute, St. Petersburg, Russian Federation
ERL Director’s Review Main Linac
Update on MEIC Nonlinear Dynamics Work
Presentation transcript:

MIT Plasma Science and Fusion Center Fusion Technology & Engineering Division J.H. Schultz M.I.T. Plasma Science and Fusion Center NSO PAC 2 Meeting M.I.T. Plasma Science and Fusion Center January 17-18, 2001

MIT Plasma Science and Fusion Center Fusion Technology & Engineering Division 1. IPB98(y.2) Scaling - reduced 2.0 m Wedged FIRE from Q=10 to Q=5 at 10 T - parametric study explores bucked/wedged option for cost/mission improvements 2. Equalization of TF/CS "burn times" - optimization of TF/CS interface 3. Scan of A, Bt for "Fixed Mission" - Margin=2 and Margin=1 4. Detailed Cost vs. Ro Sensitivities

MIT Plasma Science and Fusion Center Fusion Technology & Engineering Division

MIT Plasma Science and Fusion Center Fusion Technology & Engineering Division (1) TF/OH interface optimization t burn,TF = t burn,OH (TF/OH interface optimum for fixed Ro Subtract 3 s from TF flattop for heating e.g s flattop = 24.5 s I flattop = 3 s heat s burn No scaling of t heat with plasma parameters (2) Minimum Ro for "Mission Margin" Mission: Long-pulse  -dominated plasmas Margin=2: Q>=10; t flattop /max(  E,  p *,  J ) >= 2 Margin=1: Q>=5; t flattop /max(  E,  p *,  J ) >= 1

MIT Plasma Science and Fusion Center Fusion Technology & Engineering Division Instead of fixing Ro and varying A Vary Ro and A, while holding Margin=1,2 Margin=min(P  /P heat, t flattop /  J ) 3 Variations: 1) Minimum Ro(fixed A,B)with M=min(P  /P heat, t flattop /  J ) 2) Minimum Ro(fixed A, low A); M=Const 3) Minimum Ro(fixed A,B, high B); M=Const

MIT Plasma Science and Fusion Center Fusion Technology & Engineering Division Alpha margin=Time margin=2 at optimum A=2.0/0.525 Rapid rise in time margin and heating margin off optimum A

MIT Plasma Science and Fusion Center Fusion Technology & Engineering Division Reduced Mission: M=1, Q=5,t burn /  J =1 R o,min = 1.59 m at Bt=11.5 T & A=(2.0/0.525)= Bt=11.5 T for A=3.8 Bt=10.5 T for A=3.6 R(low A) nonlinear, but not pathological

MIT Plasma Science and Fusion Center Fusion Technology & Engineering Division R o (m) grows pathologically at high B t and q lim =3.1 Well-behaved if M=2,Q=10,t/  J =2 (q lim > 3.1 at B t >B t,opt) R omin =1.86 m, A=3.8 R omin (A=3.6) = m

MIT Plasma Science and Fusion Center Fusion Technology & Engineering Division R omin = 1.86 B t =11.5, A=3.8 R o (m) pathological at low A Cured by lowering B t ; Q=10, M=2 (no effect on R omin )

MIT Plasma Science and Fusion Center Fusion Technology & Engineering Division M2:Minimum Cost =$1.06 R o = 1.86 m, A=3.8, B t =11.5 T - M2 < $1 B, if phase auxiliary power M1:Minimum Cost = $0.92 R o =1.59 m, A=3.8, B t =11.5 T

MIT Plasma Science and Fusion Center Fusion Technology & Engineering Division Vary R o ; B t =11.5 T, A=3.8, q L =3.1, not fixed mission $/Ro Sensitivity = 1.01 $/Ro: Paux, I&C = 0 Magnets=1.64 Basic Machine=1.25 Buildings=1.14

MIT Plasma Science and Fusion Center Fusion Technology & Engineering Division R o can be reduced to 1.86 m and retain M=2 mission Mission reduction x 2 allows reduction of R o to 1.59 m (1st order!) Margin=2 mission requires lowering A 13 T d$/dR = 1: Machine sensitivity ~ nearly fixed costs Recommendation: Reduce R o to 1.87 m, Day 1 RF = 10 MW Achieve all cost/mission objectives: Q=10,  flat /  J =2, Cost<$1 B Historic first: A noncatastrophic reduction in NSO R o