Quantum magnetism of ultracold atoms $$ NSF, AFOSR MURI, DARPA Harvard-MIT Theory collaborators: Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Takuya.

Slides:



Advertisements
Similar presentations
MR TRACKING METHODS Dr. Dan Gamliel, Dept. of Medical Physics,
Advertisements

Exploring Topological Phases With Quantum Walks $$ NSF, AFOSR MURI, DARPA, ARO Harvard-MIT Takuya Kitagawa, Erez Berg, Mark Rudner Eugene Demler Harvard.
Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Funded by NSF, Harvard-MIT CUA, AFOSR, DARPA,
Interference of one dimensional condensates Experiments: Schmiedmayer et al., Nature Physics (2005,2006) Transverse imaging long. imaging trans. imaging.
Magnetism in systems of ultracold atoms: New problems of quantum many-body dynamics E. Altman (Weizmann), P. Barmettler (Frieburg), V. Gritsev (Harvard,
Nonequilibrium dynamics of ultracold atoms in optical lattices. Lattice modulation experiments and more Ehud Altman Weizmann Institute Peter Barmettler.
Nonequilibrium dynamics of ultracold fermions Theoretical work: Mehrtash Babadi, David Pekker, Rajdeep Sensarma, Ehud Altman, Eugene Demler $$ NSF, MURI,
Eugene Demler Harvard University
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
Condensed Matter models for many-body systems of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov,
Hubbard model(s) Eugene Demler Harvard University Collaboration with
Interference experiments with ultracold atoms Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Serena Fagnocchi, Vladimir Gritsev,
Breakdown of the adiabatic approximation in low-dimensional gapless systems Anatoli Polkovnikov, Boston University Vladimir Gritsev Harvard University.
Nonequilibrium spin dynamics in systems of ultracold atoms Funded by NSF, DARPA, MURI, AFOSR, Harvard-MIT CUA Collaborators: Ehud Altman, Robert Cherng,
Multicomponent systems of ultracold atoms Eugene Demler Harvard University Dynamical instability of spiral states In collaboration with Robert Cherng,
Magnetism in ultracold Fermi gases and New physics with ultracold ions: many-body systems with non-equilibrium noise $$ NSF, AFOSR MURI, DARPA Harvard-MIT.
Measuring correlation functions in interacting systems of cold atoms Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard.
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA ARO Harvard-MIT David Pekker (Harvard) Mehrtash Babadi (Harvard) Lode Pollet.
Spinor condensates beyond mean-field
Quantum noise studies of ultracold atoms Eugene Demler Harvard University Funded by NSF, Harvard-MIT CUA, AFOSR, DARPA, MURI Collaborators: Ehud Altman,
E. Altman (Weizmann), P. Barmettler (Frieburg), V. Gritsev (Harvard, Freiburg), E. Dalla Torre (Weizmann), T. Giamarchi (Geneva), M. Lukin (Harvard), A.Polkovnikov.
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA Motivated by experiments of G.-B. Jo et al., Science (2009) Harvard-MIT David.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Interference between fluctuating condensates Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman-Weizmann Eugene Demler - Harvard Vladimir.
Eugene Demler Harvard University Collaborators:
Quantum Simulation MURI Review Theoretical work by groups lead by Luming Duan (Michigan) Mikhail Lukin (Harvard) Subir Sachdev (Harvard) Peter Zoller (Innsbruck)
Measuring correlation functions in interacting systems of cold atoms
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov Harvard University Ehud Altman, Eugene Demler, Bertrand Halperin, Misha Lukin.
Dipolar interactions and magnetoroton softening in spinor condensates Funded by NSF, DARPA, MURI, AFOSR, Harvard-MIT CUA Collaborators: Vladimir Gritsev.
Quantum simulator theory
Eugene Demler Harvard University Robert Cherng, Adilet Imambekov,
Nonequilibrium dynamics of ultracold atoms in optical lattices
Probing interacting systems of cold atoms using interference experiments Harvard-MIT CUA Vladimir Gritsev Harvard Adilet Imambekov Harvard Anton Burkov.
Measuring correlation functions in interacting systems of cold atoms Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir.
Probing many-body systems of ultracold atoms E. Altman (Weizmann), A. Aspect (CNRS, Paris), M. Greiner (Harvard), V. Gritsev (Freiburg), S. Hofferberth.
Non-equilibrium dynamics of cold atoms in optical lattices Vladimir Gritsev Harvard Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann.
Eugene Demler Harvard University Strongly correlated many-body systems: from electronic materials to ultracold atoms to photons.
Quantum coherence and interactions in many body systems Collaborators: Ehud Altman, Anton Burkov, Derrick Chang, Adilet Imambekov, Vladimir Gritsev, Mikhail.
Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Takuya Kitagawa, Susanne Pielawa,
Nonequilibrium dynamics of ultracold atoms in optical lattices. Lattice modulation experiments and more Ehud Altman Weizmann Institute Peter Barmettler.
Nonequilibrium dynamics of bosons in optical lattices $$ NSF, AFOSR MURI, DARPA, RFBR Harvard-MIT Eugene Demler Harvard University.
Vladimir Gritsev Harvard Adilet Imambekov Harvard Anton Burkov Harvard Robert Cherng Harvard Anatoli Polkovnikov Harvard/Boston University Ehud Altman.
Dipolar interactions in F=1 ferromagnetic spinor condensates. Roton instabilities and possible supersolid phase Eugene Demler Harvard University Funded.
Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Takuya Kitagawa, Susanne Pielawa,
Nonequilibrium dynamics of interacting systems of cold atoms Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Vladimir Gritsev,
Magnetism of spinor BEC in an optical lattice
Nonequilibrium dynamics of ultracold atoms in optical lattices David Pekker, Rajdeep Sensarma, Takuya Kitagawa, Susanne Pielawa, Vladmir Gritsev, Mikhail.
Probing phases and phase transitions in cold atoms using interference experiments. Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman- The.
The Center for Ultracold Atoms at MIT and Harvard Quantum noise as probe of many-body systems Advisory Committee Visit, May 13-14, 2010.
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
Outline of these lectures Introduction. Systems of ultracold atoms. Cold atoms in optical lattices. Bose Hubbard model. Equilibrium and dynamics Bose mixtures.
T. Kitagawa (Harvard), S. Pielawa (Harvard), D. Pekker (Harvard), R. Sensarma (Harvard/JQI), V. Gritsev (Fribourg), M. Lukin (Harvard), Lode Pollet (Harvard)
Dynamics of repulsively bound pairs in fermionic Hubbard model David Pekker, Harvard University Rajdeep Sensarma, Harvard University Ehud Altman, Weizmann.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Many-body quench dynamics in ultracold atoms Surprising applications to recent experiments $$ NSF, AFOSR MURI, DARPA Harvard-MIT Eugene Demler (Harvard)
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Polar molecules in optical lattices Ryan Barnett Harvard University Mikhail Lukin Harvard University Dmitry Petrov Harvard University Charles Wang Tsing-Hua.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Measuring correlation functions in interacting systems of cold atoms Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Exploring many-body physics with synthetic matter
Probing interacting systems of cold atoms using interference experiments Vladimir Gritsev, Adilet Imambekov, Anton Burkov, Robert Cherng, Anatoli Polkovnikov,
Analysis of quantum noise
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Part II New challenges in quantum many-body theory:
Dynamics of spinor condensates: dipolar interactions and more
Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov.
Presentation transcript:

Quantum magnetism of ultracold atoms $$ NSF, AFOSR MURI, DARPA Harvard-MIT Theory collaborators: Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Takuya Kitagawa, Mikhail Lukin, Susanne Pielawa, Joerg Schmiedmayer Experiments: Bloch et al., Schmiedmayer et al., Stamper-Kurn et al. Eugene Demler (Harvard)

Stoner instability. Double exchange Ferromagnetism in itinerant systems Antiferromagnetism Frustrated magnetic systems ? Magnetism in condensed matter systems

Quantum magnetism of ultracold atoms Familiar models, New questions Spin dynamics in 1d systems Luttinger model and nonequilibrium dynamics. New characterization: full distribution functions Ferromagnetic F=1 spinor condensates Quantum Hall ferromagnets in disguise. Skyrmion crystal phases

Spin dynamics in 1d systems: Ramsey interference experiments T. Kitagawa, S. Pielawa, A. Imambekov, J.Schmiedmayer, V. Gritsev, E. Demler arXiv:

Working with N atoms improves the precision by. Ramsey interference t 0 1 Atomic clocks and Ramsey interference:

Ramsey Interference with BEC Single mode approximation time Amplitude of Ramsey fringes Interactions should lead to collapse and revival of Ramsey fringes

1d systems in microchips Treutlein et.al, PRL 2004, also Schmiedmayer, Van Druten Two component BEC in microchip Ramsey Interference with 1d BEC 1d systems in optical lattices Ramsey interference in 1d tubes: A.Widera et al., B. PRL 100: (2008)

Ramsey interference in 1d condensates Collapse but no revivals A. Widera, et al, PRL 2008

Ramsey interference in 1d condensates A. Widera, et al, PRL 2008 Only partial revival after spin echo! Spin echo experiments Expect full revival of fringes

Spin echo experiments in 1d tubes Single mode approximation does not apply. Need to analyze the full model

Ramsey interference in 1d Time evolution Technical noise could also lead to the absence of echo Need “smoking gun” signatures of many-body decoherece Luttinger liquid provides good agreement with experiments. A. Widera et al., PRL Theory: V. Gritsev

Distribution Probing spin dynamics using distribution functions Distribution contains information about all the moments → It can probe the system Hamiltonian Joint distribution function can also be obtained!

Distribution function of fringe contrast as a probe of many-body dynamics Short segments Long segments Radius = Amplitude Angle = Phase

Distribution function of fringe contrast as a probe of many-body dynamics Preliminary results by J. Schmiedmayer’s group Splitting one condensate into two.

Short segments Long segments l =20 mm l =110 mm ExptTheory Data: Schmiedmayer et al., unpublished

Skyrmion crystals in ferromagnetic F=1 spinor condensates R. Cherng, Ph.D. Thesis

Spinor condensates. F=1 Three component order parameter: m F =-1,0,+1 Contact interaction depends on relative spin orientation When g 2 >0 interaction is antiferromagnetic. Example 23 Na When g 2 <0 interaction is ferromagnetic. Example 87 Rb Favors condensation into m F =0 state (or its rotation) Favors condensation into m F =1 state (or its rotation)

Spin textures in ferromagnetic Rb condensates m F =-1 m F =0 m F =+1 m F =-1 m F =0 m F =+1 Imbalanced (non-equilibrium) Initial populations Equal (equilibrium) Initial populations Vengalattore et al., PRL (2008)

Spin textures: checkerboard pattern Spectrum in Momentum Space Equal populations Transverse Longitudinal Vengalattore et al., PRL (2008)

Magnetic dipolar interactions in spinor condensates Comparison of contact and dipolar interactions. Typical value a=100a B q For 87 Rb m = m B and e =0.007 Spin dependent interactions in 87 Rb are small a 2 -a 0 = a B A. Widera, I. Bloch et al., New J. Phys. 8:152 (2006) Interaction of F=1 atoms

Energy scales Quadratic Zeeman (1 Hz) Spin dependent S-wave scattering (g s n=8 Hz) Dipolar interaction (g d n = 1 Hz) Quasi-2D geometry B F Precession (115 kHz) Spin independent S-wave scattering (g s n=215 Hz) High energy scales Low energy scales

Dipolar interactions Fast Larmor precession strongly modifies effective dipolar interactions Fourier components of effective interaction (in-plane field)

Instabilities of ferromagnetic F=1 Rb condensate due to dipolar interactions Theory: unstable modes in the regime corresponding to Berkeley experiments. Cherng, Demler, PRL (2009) Experiments. Vengalattore et al. PRL (2008)

From microscopic Hamiltonian to effective low energy theory Dipolar and quadratic Zeeman A.Lamacraft, PRA (2008) Fixed densityMaximally polarized Magnetization Condensate phase Superfluid velocity Low energy manifold

Mermin-Ho relation Divergence flow Mermin-Ho Skyrmion density MagnetizationSkyrmion densitySuperfluid velocity

Non-linear sigma model Low-energy LagrangianSuperfluid flow related to skyrmion density Spin StiffnessSkyrmion interaction (Log) Superfluid kinetic energy

Magnetic crystals in spinor condensates

Effective Hamiltonian Spin dependent interactions Skyrmion interaction Interaction strengths

Minimal energy spin texture

Find all spin groups consistent with constraints Intrinsic constraints a)Zero net skyrmion charge b)Maximally polarized magnetization c)Explicit symmetry breaking via external field D 2 point group SG = p2mm, p2mg, p2gg Phenomenological constraints d)Rectangular lattice e)No easy-axis or easy plane f)Zero net magnetization

Minimal energy spin texture

Understanding spin textures

Skyrmions in ferromagnets Single skyrmion solution Spin spaceReal space Radial coordinate Azimuthal coordinate Ordinary ferromagnets. Equations of motion Spinor ferromagnets. Equations of motion ~

Exact solutions for spinor condensates Spin spaceReal space Stereographic coordinates Holomorphic coordinates Separation of variables static solution ansatz

Single skyrmion solutions Ordinary ferromagnetSpinor condensate ferromagnet

Lattice of skyrmions Ordinary ferromagnetSpinor condensate ferromagnet

Spin textures: skyrmion lattice Equal populations Transverse Longitudinal Skyrmion lattice solution without dipolar interactions

Spin textures Equal populations Transverse Longitudinal Skyrmion lattice solution with dipolar interactions

Quantum magnetism of ultracold atoms New questions, interesting physics Spin dynamics in 1d systems Luttinger model and nonequilibrium dynamics. New characterization: full distribution functions Ferromagnetic F=1 spinor condensates Quantum Hall ferromagnets in disguise. Skyrmion crystal phases Harvard-MIT