2/28/2016 1 Runge 4 th Order Method Computer Engineering Majors Authors: Autar Kaw, Charlie Barker

Slides:



Advertisements
Similar presentations
6/1/ Runge 4 th Order Method Industrial Engineering Majors Authors: Autar Kaw, Charlie Barker
Advertisements

5/1/ Finite Difference Method Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Newton’s Divided Difference Polynomial Method of Interpolation
1 Direct Method of Interpolation Electrical Engineering Majors Authors: Autar Kaw, Jai Paul
Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker
5/19/ Runge 4 th Order Method Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker
7/2/ Differentiation-Discrete Functions Industrial Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati.
7/2/ Backward Divided Difference Major: All Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati
8/8/ Euler Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
8/8/ Gauss Quadrature Rule of Integration Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
8/15/ Differentiation-Discrete Functions Major: All Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati.
8/15/ Binary Representation Major: All Engineering Majors Authors: Autar Kaw, Matthew Emmons
9/14/ Trapezoidal Rule of Integration Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Spline Interpolation Method Computer Engineering Majors Authors: Autar Kaw, Jai Paul
9/22/ Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
10/8/ Propagation of Errors Major: All Engineering Majors Authors: Autar Kaw, Matthew Emmons
1 Lagrangian Interpolation Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1 Newton’s Divided Difference Polynomial Method of Interpolation Chemical Engineering Majors Authors: Autar Kaw, Jai.
10/20/ Runge 2 nd Order Method Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Newton’s Divided Difference Polynomial Method of Interpolation Major: All Engineering Majors Authors: Autar Kaw,
5/30/ Runge 4 th Order Method Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
11/16/ Euler Method Electrical Engineering Majors Authors: Autar Kaw, Charlie Barker
11/17/ Shooting Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
12/1/ Trapezoidal Rule of Integration Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Lagrangian Interpolation Computer Engineering Majors Authors: Autar Kaw, Jai Paul
1 Direct Method of Interpolation Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1/16/ Runge 4 th Order Method Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
1/19/ Runge 4 th Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Direct Method of Interpolation Computer Engineering Majors Authors: Autar Kaw, Jai Paul
1 Direct Method of Interpolation Mechanical Engineering Majors Authors: Autar Kaw, Jai Paul
1 Spline Interpolation Method Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1 Newton’s Divided Difference Polynomial Method of Interpolation Mechanical Engineering Majors Authors: Autar Kaw,
1 Spline Interpolation Method Mechanical Engineering Majors Authors: Autar Kaw, Jai Paul
3/12/ Trapezoidal Rule of Integration Computer Engineering Majors Authors: Autar Kaw, Charlie Barker
6/13/ Secant Method Computer Engineering Majors Authors: Autar Kaw, Jai Paul
Trapezoidal Rule of Integration
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Computer Engineering Majors Authors: Autar Kaw, Charlie Barker
Differentiation-Discrete Functions
Newton’s Divided Difference Polynomial Method of Interpolation
Spline Interpolation Method
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker
Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Spline Interpolation Method
Direct Method of Interpolation
Spline Interpolation Method
Lagrangian Interpolation
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Newton’s Divided Difference Polynomial Method of Interpolation
Trapezoidal Rule of Integration
Trapezoidal Rule of Integration
Spline Interpolation Method
Binary Representation
Industrial Engineering Majors Authors: Autar Kaw, Charlie Barker
Direct Method of Interpolation
Simpson’s 1/3rd Rule of Integration
Binary Representation
Binary Representation
Lagrangian Interpolation
Simpson’s 1/3rd Rule of Integration
Simpson’s 1/3rd Rule of Integration
Simpson’s 1/3rd Rule of Integration
Electrical Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
Newton’s Divided Difference Polynomial Method of Interpolation
Lagrangian Interpolation
Presentation transcript:

2/28/ Runge 4 th Order Method Computer Engineering Majors Authors: Autar Kaw, Charlie Barker Transforming Numerical Methods Education for STEM Undergraduates

Runge-Kutta 4 th Order Method

3 Runge-Kutta 4 th Order Method where For Runge Kutta 4 th order method is given by

How to write Ordinary Differential Equation Example is rewritten as In this case How does one write a first order differential equation in the form of

Example A rectifier-based power supply requires a capacitor to temporarily store power when the rectified waveform from the AC source drops below the target voltage. To properly size this capacitor a first-order ordinary differential equation must be solved. For a particular power supply, with a capacitor of 150 μF, the ordinary differential equation to be solved is Find voltage across the capacitor at t= s. Use step size h=

Solution Step 1:

Solution Cont is the approximate voltage at

Solution Cont Step 2:

Solution Cont is the approximate voltage at

Solution Cont The exact solution to the differential equation at t= seconds is

Comparison with exact results Figure 1. Comparison of Runge-Kutta 4th order method with exact solution

Step size, − − − − − Effect of step size (exact) Table 1 Value of voltage at time, t= s for different step sizes

Effects of step size on Runge- Kutta 4 th Order Method Figure 2. Effect of step size in Runge-Kutta 4th order method

Comparison of Euler and Runge- Kutta Methods Figure 3. Comparison of Runge-Kutta methods of 1st, 2nd, and 4th order.

Additional Resources For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit a_4th_method.html

THE END