1 A Fresh Look at the Higgs Production in the Forward Proton Mode V.A. Khoze ( IPPP, Durham & PNPI ) (in collaboration with Lucian Harland-Lang and Misha.

Slides:



Advertisements
Similar presentations
Experimental Particle Physics PHYS6011 Joel Goldstein, RAL 1.Introduction & Accelerators 2.Particle Interactions and Detectors (2) 3.Collider Experiments.
Advertisements

Double proton tagging at the LHC UK HEP Forum, Coseners house 25th April 2004 Brian Cox Improved mass resolution Only 0 ++ (or 2 ++ ) systems produced.
1 Diffractive processes as a means to study new physics at the LHC VAK, ADM, WJS and G.W., visit. profs: A.De Roeck, A.Kaidalov, M.Ryskin + 6 young int.
LHC/HERA workshop, WG 4 (17. Jan. 2005)
1 V.A. Khoze (IPPP, Durham & PNPI, St. Petersburg ) main aim: to demonstrate that the Central Exclusive Diffractive Production can provide unique advantages.
Discussion session : What can HERA still provide ? 9 April 2008 (based on works with A. Kaidalov, A. Martin and M. Ryskin ) V.A. Khoze (IPPP, Durham &
1 V.A. Khoze (IPPP, Durham & PINP) main aim: to demonstrate that the Central Exclusive Diffractive Production can provide unique advantages for probing.
1 main aim: to highlight recent development in the theory and phenomenology of the CED Higgs production (Based on works of extended Durham group) Studying.
1 V.A. Khoze ( IPPP, Durham ) A. Shuvaev & KMR arXiv: [hep-ph] Physics Backgrounds Revisited.
1 V.A. Khoze (IPPP, Durham) main aim: to show that the Central Diffractive Processes may provide an exceptionally clean environment to search for and to.
1 New Physics with Forward Protons at the LHC H  V.A. Khoze ( IPPP, Durham & Rockefeller U. & PNPI ) (Based on works of extended Durham group) main aims:
1 V.A. Khoze (IPPP, Durham & Manchester) main aim: to highlight recent development in the theory and phenomenology of the CED Higgs production (Based on.
1  V.A. Khoze ( IPPP, Durham ) (In collaboration with L. Harland-Lang, M.Ryskin and W.J. Stirling) Standard Candles for Central Exclusive Processes at.
Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
1 New Physics with Forward Protons at the LHC H  V.A. Khoze ( IPPP, Durham & Rockefeller Univ.) (Based on works of extended Durham group) main aims: to.
1 V.A. Khoze (IPPP, Durham) main aim: to show that the Central Exclusive Diffractive Processes may provide an exceptionally clean environment to study.
1 (based on works with A. Martin and M. Ryskin ) Early LHC Measurements to Check Predictions For Central Exclusive Production Higgs sector study- one of.
1 New Physics with Forward Protons at the LHC H  V.A. Khoze ( IPPP, Durham & Rockefeller U. & PNPI ) (Based on works of extended Durham group) main aims:
1 Forward Proton Tagging at the LHC as a Means to Search for New Physics V.A. Khoze (IPPP, Durham) main aims  to illustrate the theoretical motivations.
On the Trail of the Higgs Boson Meenakshi Narain.
1 V.A. Khoze (IPPP, Durham) Disclaimer : some of the results are (very) preliminary and should be taken only as a snapshot of the current understanding.
1 1  (based on works by V.Khoze, M. RYskin and W.J. STirling and L. HArland-Lang ) Central Diffractive Production of Heavy Quarkonia. (KRYSTHAL collaboration)
Diffractive W/Z & Exclusive CDF II DIS 2008, 7-11 April 2008, University College London XVI International Workshop on Deep-Inelastic Scattering and.
Discovery Potential for MSSM Higgs Bosons with ATLAS Johannes Haller (CERN) on behalf of the ATLAS collaboration International Europhysics Conference on.
Recent Results on Diffraction and Exclusive Production from CDF Christina Mesropian The Rockefeller University.
1 V.A. Khoze (IPPP, Durham & PINP) main aim: to demonstrate that the Central Exclusive Diffractive Production can provide unique advantages for probing.
1 1  V.A. Khoze ( IPPP, Durham ) (based on works by V.KHoze, M. RYskin and W.J. STirling and L. HArland-Lang ) Central Diffractive Production of Heavy.
Central Exclusive Meson Pair Production in Perturbative Regime. (based on works by V.Khoze, M. RYskin and W.J. STirling and L. HArland-Lang ) (KRYSTHAL.
1 1  V.A. Khoze ( IPPP, Durham & PNPI ) (based on works by V.Khoze, M. RYskin and W.J. STirling and L. HArland-Lang ) Central Diffractive Production of.
1 Heavy Quarkonia: as Seen through the Eyes of C entral E xclusive P roduction at the Tevatron and LHC  V.A. Khoze ( IPPP, Durham ) (Based on collaboration.
M. Gallinaro - "Physics with the CT-PPS project" - LHC Forward - Sep. 23, Michele Gallinaro LIP Lisbon (on behalf of the CMS and TOTEM collaborations)
1 Forward Proton Tagging at the LHC as a Means to Search for New Physics V.A. Khoze (IPPP, Durham) main aims  to illustrate the theoretical motivations.
Testing the standard Model in the forward region at the LHC
Exclusive Dilepton (e + e -,  +  -,J/ ,  ',  ) Exclusive Dilepton (e + e -,  +  -,J/ ,  ',  ) and Diphoton Production at CDF II James L. Pinfold.
1 V.A. Khoze ( IPPP, Durham and PINP ) KHARYS (in collaboration with Lucian HArland-Lang and Misha RYSkin) Central Exclusive Processes at Hadron Colliders.
QCD 与强子物理研讨会, 2010 年 8 月 4 - 10 日,威海 Prospects of Flavor Physics at the LHC 高原宁 清华大学高能物理研究中心 2010/8/61Y. Gao, Prospects of flavor physics at the LHC.
Double proton tagging at 420m as a means to discover new physics Brian Cox The Future of Forward Physics at the LHC Dec 2004, Manchester glodwick.hep.man.ac.uk/conference.
K. Goulianos The Rockefeller University (Representing the CDF Collaboration) DIS April – 1 May Madison, Wisconsin Update on CDF Results on Diffraction.
1 V.A. Khoze ( IPPP, Durham ) Central exclusive production of heavy quarkonia and charmonium-like states (selected topics ) X.
Possibility of tan  measurement with in CMS Majid Hashemi CERN, CMS IPM,Tehran,Iran QCD and Hadronic Interactions, March 2005, La Thuile, Italy.
AFP Introduction September 10th 2014 M. Bruschi, INFN Bologna (Italy) 1.
QCD at LHC with ATLAS Theodota Lagouri Aristotle University of Thessaloniki (on behalf of the ATLAS collaboration) EPS July 2003, Aachen, Germany.
Physics at LHC Prague, 6-12 July, 2003 R. Kinnunen Helsinki Institute of Physics A/H ->  and H + ->  in CMS R. Kinnunen Physics at LHC Prague July 6.
Higgs Reach Through VBF with ATLAS Bruce Mellado University of Wisconsin-Madison Recontres de Moriond 2004 QCD and High Energy Hadronic Interactions.
The FP420 R&D Project Motivation from KMR calculations (e.g. hep-ph ) Selection rules mean that central system is (to a good approx) 0 ++ If you.
Central Exclusive Production at Hadron Colliders ( KRYSTHAL Collaboration ) V.A. Khoze ( IPPP, Durham and HIP& AFO, Helsinki ) (selected new results )
Flavour independent neutral Higgs boson searches at LEP Ivo van Vulpen NIKHEF On behalf of the LEP collaborations EPS conference 2005.
1 Higgs Production in the Forward Proton Mode Revisited V.A. Khoze ( IPPP, Durham ) (in collaboration with Lucian Harland-Lang, Misha Ryskin and Marek.
QCD issues through the eyes of AFP220 (selected topics) V.A. Khoze (IPPP,Durham) (special thanks to Misha Ryskin and Andy Pilkington for discussions )
Diffractive Higgs production Kaidalov,Khoze,Martin,Ryskin,Stirling Introduction SM Higgs pp  p + H + p Calculation of bb bar background 0 + and 0 - Higgs.
ATLAS Higgs Search Strategy and Sources of Systematic Uncertainty Jae Yu For the ATLAS Collaboration 23 June, 2010.
Marc M. Baarmand – Florida Tech 1 TOP QUARK STUDIES FROM CMS AT LHC Marc M. Baarmand Florida Institute of Technology PHYSICS AT LHC Prague, Czech Republic,
1 V.A. Khoze ( IPPP, Durham and PINP ) (in collaboration with Lucian Harland-Lang and Misha Ryskin) Central Exclusive Production at hadron colliders (selected.
1 V.A. Khoze ( IPPP, Durham ) Central exclusive production of heavy quarkonia and charmonium-like states (selected topics ) X.
La Thuile, March, 15 th, 2003 f Makoto Tomoto ( FNAL ) Prospects for Higgs Searches at DØ Makoto Tomoto Fermi National Accelerator Laboratory (For the.
1 V.A. Khoze ( IPPP, Durham and PINP ) KHARYS (in collaboration with Lucian HArland-Lang and Misha RYSkin) Central Exclusive Processes at Hadron Colliders.
U.Klein and B.Mellado for the LHeC Study Group Snowmass meeting, CERN, 20/06/13 Higgs in ep at the LHeC.
Studying the BSM Higgs sector by forward proton tagging at the LHC
Valery Khoze (IPPP, Durham & PNPI, St.Pb.)
and diphoton resonance production
Valery Khoze (IPPP, Durham & PNPI, St.Petersburg)
PROSPECTS FOR FORWARD PHYSICS AT THE LHC
The FP420 R&D Project LOI to LHCC signed by 29 institutes from 11 countries - more in the process of joining The aim of FP420 is to install high precision.
Central Exclusive Production of BSM Higgs bosons decaying to jets
Diffraction at LHC, Tevatron and HERA
Trigger  Detectors at 420m can be included in the HLT
Valery Khoze (IPPP, Durham & PNPI, St. Petersburg))
(in collaboration with Lucian Harland-Lang and Misha Ryskin)
For theoretical audience For experimental audience
 MHV rule, (Super)Symmetries and ‘Diffractive Higgs’
Presentation transcript:

1 A Fresh Look at the Higgs Production in the Forward Proton Mode V.A. Khoze ( IPPP, Durham & PNPI ) (in collaboration with Lucian Harland-Lang and Misha Ryskin) H

2 H Main Goal: BY POPULAR DEMAND Current Status of CEP Theory

3 Forward Proton LHC as a gluonic Aladdin’s Lamp Higgs Studies Photon-Photon, Photon - Hadron Physics. ‘Threshold Scan ’: ‘ Light’ New Physics … Various aspects of Diffractive Physics ( soft & hard ). High intensity Gluon Factory (underrated gluons) ( ~ 20 mln quraks vs 417 ‘tagged’ g at LEP ) QCD test reactions, dijet PP-luminosity monitor FPT  Could provide a unique additional tool to complement the conventional strategies at the LHC.  Higgs is only a part of the broad EW, BSM and diffractive wealth of QCD studies, glue-glue collider, photon-hadron, photon-photon interactions …  (CDPE) ~ 10 *  (incl) PRIOR TO THE LHC START-UP

4 Current situation with ‘diffractive Higgs’ (post- LHC discovery)

5 + strong evidence from the Tevatron 4 July 2012

6 The main advantages of CEP Higgs production  Prospects for high accuracy (~1%) mass measurement (irrespectively of the decay mode).   Quantum number filter/analyser.  ( 0++ dominance ; C,P- even) H ->bb opens up ( Hbb Yukawa coupl. ) (gg) CED  bb in LO ; NLO,NNLO, b- mass effects – controllable. For some scenarios CEP may become a discovery channel   A handle on the overlap backgrounds- Fast Timing Detectors ( 10 ps timing or better ).  New leverage –proton momentum correlations ( probes of QCD dynamics, CP- violation effects… ) H BSM PRIOR TO THE LHC START-UP A= σ(φ < π)−σ(φ > π) σ(φ < π) +σ(φ > π ) ~n 0 ·(~p 1 ⊥ × 2 ⊥ ) ∼ sin φ A= σ(φ < π)−σ(φ > π) σ(φ < π) +σ(φ > π) currently ATLAS FP-420 (STFC cutting rule ) CMS-HPS, Totem ATLAS-AFP Triple product correlation: Integrated counting asymmetry (~10%)

7 CEP is reported by LHCb (DIS-11) new CDF CEP results (PRL-2012) All measurements in agreement with Durham group (pre)dictions. ( or LRGs ) CMS--first results CEP through the eyes of the KRYSTHAL ( ) (Lucian’s talk)

8 (MSSM update- Marek’s talk)

9

10 THINGS TO DO ! Account for the b-dependence of the survival factors (GLM-new results )    (known unknowns) Improvements of models for soft diffraction : remove tensions with Totem data on and, agreement with the LHC results on low mass SD, agreement with the Tevatron/LHC data on CEP processes (Durham- work in progress) (N)NLO-effects in hard ME.

11 Signal-to-Background Ratio (a brief reminder)  The largest signal, but large background and (most) difficult trigger (other channels –too low rate). Major theor. uncertainties cancel in the ratio, in particular survival factors, PDFs,.. Experimental efficiencies (trigger, b-tagging..) cancel. Dominant non-PU backgrounds: SM Higgs, 125 GeV   Main characteristics: 2007 (HKRTSW ) values Mass window ~4 GeV. g-b misID ~ 1.3% cone size ~0.5. S/B  1 Could be improved by a factor of 2 or so. ( )

12 non-PU backgrounds Dijet-monitor for the Higgs yield (requires detailed MC studies) 1.3%  1% (CMS) new detailed (post-2007) studies needed (ccg-similar) Andy Pilkington (CERN, Febr. 2013)

13 Jeff Forshaw’s Conclusion on Higgs CEP Theory (CERN, , CERN) (taken into account in SuperCHIC ) (in progress)

14 KMR(2000)- an extension of the results by DDT(1980) (ignored by some authors of the recent papers) Recent analysis by Lucian Harland-Lung (in press)

15

16

17

18 Jury is still out

19

20

21

22 S/B may improve by a factor of ~2 ~20 signal events

23 KRYSTHAL Col

24