カイラル相転移・カラー超伝導の 臨界温度近傍における クォークの準粒子描像 Masakiyo Kitazawa Kyoto Univ. M.K., T.Koide, T.Kunihiro and Y.Nemoto, PRD70,056003 (2004), M.K., T.Koide, T.Kunihiro.

Slides:



Advertisements
Similar presentations
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Advertisements

The regularization dependence on the phase diagram in the Nambu-Jona-Lasinio model Hiroaki Kohyama (CYCU)
Bose-Einstein condensation Bose-Einstein condensation in relativistic quasi-chemical equilibrium system --- from color superconductivity to diquark BEC.
第十届 QCD 相变与相对论重离子物理研讨会, August Z. Zhang,
Zhao Zhang ( Kyoto University ) Vector-vector interaction, Charge neutrality and the number of QCD critical points contents  Introduction to QCD phase.
北沢 正清 大阪大学 盛岡研究会、つなぎ温泉、 2009 年 6/26 カラー超伝導 Contents: (1) クォーク (2) 低~中間密度領域のカラー超伝導 (3) 冷却原子系からの情報.
Masakiyo Kitazawa Osaka University ATHIC2008, Tsukuba, Oct. 14, 2008 “strongly coupled” Quark Matter.
Naoki Yamamoto (Univ. of Tokyo) Tetsuo Hatsuda (Univ. of Tokyo) Motoi Tachibana (Saga Univ.) Gordon Baym (Univ. of Illinois) Phys. Rev. Lett. 97 (2006)
Ferromagnetism in quark matter and origin of magnetic field in compact stars Toshitaka Tatsumi (Kyoto U.) (for a recent review, hep-ph/ ) I. Introduction.
1 Debye screened QGP QCD : confined Chiral Condensate Quark Potential Deconfinement and Chiral Symmetry restoration expected within QCD mm symmetryChiral.
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev. C87 (2013) (arXiv: ) Eur. Phys. J. A50 (2014) 16 Some preliminary results Heavy.
Chiral symmetry breaking in dense QCD
Sigma model and applications 1. The linear sigma model (& NJL model) 2. Chiral perturbation 3. Applications.
In-medium hadrons and chiral symmetry G. Chanfray, IPN Lyon, IN2P3/CNRS, Université Lyon I The Physics of High Baryon Density IPHC Strasbourg, september.
QCD Thermodynamics Jean-Paul Blaizot, CNRS and ECT* RHIC Physics in the Context of the Standard Model RBRC June 21,
格子QCDシミュレーションによる QGP媒質中のクォーク間ポテンシャルの研究
Exploring Real-time Functions on the Lattice with Inverse Propagator and Self-Energy Masakiyo Kitazawa (Osaka U.) 22/Sep./2011 Lunch BNL.
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev. C87 (2013) arXiv: Some preliminary results 2015 HaPhy-HIM Joint meeting Kie.
Quark deconfinement and symmetry Hiroaki Kouno Dept. of Phys., Saga Univ. Collaboration with K. Kashiwa, Y. Sakai, M. Yahiro ( Kyushu. Univ.) and M. Matsuzaki.
July, 2008 Summer School on Dense Matter and HI Dubna 1 Relativistic BCS-BEC Crossover at Quark Level Pengfei Zhuang Physics Department, Tsinghua University,
Pengfei Zhuang Physics Department, Tsinghua University, Beijing
1/23 BCS-BEC crossover in relativistic superfluid Yusuke Nishida (University of Tokyo) with Hiroaki Abuki (Yukawa Institute) ECT*19 May, 2005.
Lianyi He and Pengfei Zhuang Physics Department, Tsinghua U.
Some Topics on Chiral Transition and Color Superconductivity Teiji Kunihiro (YITP) HIM Nov. 4-5, 2005 APCTP, Pohang.
T BB Hadronic matter Quark-Gluon Plasma Chiral symmetry broken Chiral symmetry restored Early universe A new view and on the QCD phase diagram Recent.
Chiral Symmetry Restoration and Deconfinement in QCD at Finite Temperature M. Loewe Pontificia Universidad Católica de Chile Montpellier, July 2012.
Third Moments of Conserved Charges in Phase Diagram of QCD Masakiyo Kitazawa (Osaka Univ.) M. Asakawa, S. Ejiri and MK, PRL103, (2009). Baryons’10,
Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division.
Infrared gluons in the stochastic quantization approach Lattice20081 Contents 1.Introduction 2.Method: Stochastic gauge fixing 3.Gluon propagators 4.Numerical.
Chiral phase transition and chemical freeze out Chiral phase transition and chemical freeze out.
@ Brookhaven National Laboratory April 2008 Spectral Functions of One, Two, and Three Quark Operators in the Quark-Gluon Plasma Masayuki ASAKAWA Department.
Thermal phase transitions in realistic dense quark matter
Color neutrality effects in the phase diagram of the PNJL model A. Gabriela Grunfeld Tandar Lab. – Buenos Aires - Argentina In collaboration with D. Blaschke.
Relativistic BCS-BEC Crossover in a boson-fermion Model
SU2 カラー NJL モデルのボソナイゼー ションと高温高密度での状態方程式 土岐 博( RCNP/Osaka ) W. Weise (TMU/Muenchen)
Fluctuation effect in relativistic BCS-BEC Crossover Jian Deng, Department of Modern Physics, USTC 2008, 7, QCD workshop, Hefei  Introduction  Boson-fermion.
1 Color Superconductivity: CFL and 2SC phases  Introduction  Hierarchies of effective lagrangians  Effective theory at the Fermi surface (HDET)  Symmetries.
WHOT-QCD Collaboration Yu Maezawa (RIKEN) in collaboration with S. Aoki, K. Kanaya, N. Ishii, N. Ukita, T. Umeda (Univ. of Tsukuba) T. Hatsuda (Univ. of.
Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry.
The Physics of high baryon densities Probing the QCD phase diagram The critical end point Properties of mesons in matter –Baryon density vs. temperature.
A quasi-particle picture of quarks coupled with a massive boson at finite temperature ~ mass effect and complex pole ~ Kazuya Mitsutani ( YITP ) in collaboration.
Quark spectrum near chiral and color-superconducting phase transitions Masakiyo Kitazawa Kyoto Univ. M.K., T.Koide, T.Kunihiro and Y.Nemoto, PRD70,
QCD 相転移における秩序変数 揺らぎとクォークスペクトル 根本幸雄 ( 名古屋大 ) with 北沢正清 ( 基研 ) 国広悌二 ( 基研 ) 小出知威 (Rio de Janeiro Federal U.)
QCD 相転移の臨界点近傍における 非平衡ダイナミクスについて 北沢正清(京大), 国広悌二(京大基研 ), 根本幸雄 (RIKEN-BNL) 0 T  の1コメ ント Chiral symmetry breaking Color superconductivity (CSC) critical endpoint.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Pentaquark decay width in QCD sum rules F.S. Navarra, M. Nielsen and R.R da Silva University of São Paulo, USP Brazil (  decay width) hep-ph/ (
THERMODYNAMICS OF THE HIGH TEMPERATURE QUARK-GLUON PLASMA Jean-Paul Blaizot, CNRS and ECT* Komaba - Tokyo November 25, 2005.
Toru T. Takahashi with Teiji Kunihiro ・ Why N*(1535)? ・ Lattice QCD calculation ・ Result TexPoint fonts used in EMF. Read the TexPoint manual before you.
Quarks Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) Tokyo Univ., Sep. 27, 2007 Lattice Study of F. Karsch and M.K., arXiv:
Hadrons from a hard wall AdS/QCD model Ulugbek Yakhshiev (Inha University & National University of Uzbekistan) Collaboration Hyun-Chul Kim (Inha University)
Masayuki Matsuzaki Fukuoka Univ. of Education Phys. Rev. D (2010)
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
Spectral functions in functional renormalization group approach
Thermodynamics of QCD in lattice simulation with improved Wilson quark action at finite temperature and density WHOT-QCD Collaboration Yu Maezawa (Univ.
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev
Precursory Phenomena in Chiral Transition and Color Superconductivity
mesons as probes to explore the chiral symmetry in nuclear matter
in Dense and Hot Quark Matter
Strangeness and charm in hadrons and dense matter, YITP, May 15, 2017
Aspects of the QCD phase diagram
Color Superconductivity in dense quark matter
China-Japan Nuclear Physics 2006
Chengfu Mu, Peking University
Aspects of Color Superconductivity in 2-flavor Quark Matter
Teiji Kunihiro (Kyoto) In collaboration with
Infrared Slavery Above and Hadronic Freedom Below Tc
QCD at very high density
A possible approach to the CEP location
Presentation transcript:

カイラル相転移・カラー超伝導の 臨界温度近傍における クォークの準粒子描像 Masakiyo Kitazawa Kyoto Univ. M.K., T.Koide, T.Kunihiro and Y.Nemoto, PRD70, (2004), M.K., T.Koide, T.Kunihiro and Y.Nemoto, hep-ph/ , M.K., T.Kunihiro and Y.Nemoto, in preparation× 2. 第6回 関西QNPセミナー 於:京大基研

2SC pairing at low energy: 150~170MeV Phase Diagram of QCD Color Superconductivity Hadrons T Chiral Symm. Broken 0  attractive channel in one-gluon exchange interaction. quark (fermion) system Color Superconductivity Cooper instability at sufficiently low T SU (3) c color-gauge symmetry is broken! RHIC Compact Stars GSI,J-PARC [ 3 ] c ×[ 3 ] c = [ 3 ] c + [ 6 ] c u d

150~170MeV Phase Diagram of QCD Color Superconductivity(CSC) Hadrons T Chiral Symm. Broken 0  ~100MeV Hadronic excitations in QGP phase soft mode of chiral transition - Hatsuda, Kunihiro. qq bound state - Shuryak, Zahed; Brown, Lee, Rho, Shuryak. Lattice simulations – Asakawa, Hatsuda; etc. Pre-critical region of CSC large pair fluctuations  precursory phenomena of CSC M.K., et al., 2002,2004

The pseudogap survives up to  =0.05~0.1 ( 5~10% above T C ). Numerical Result : Density of State

Spectral Function of Quarks  [MeV] k [MeV]  = 0 MeV  = 0.05 quark part  - ( ,k) sharp peak with negative dispersion k [MeV]  [MeV] quasiparticle peak  ~ k

TABLE OF CONTENTS 1, Introduction 2, Quarks above CSC phase transition 3, Quarks above chiral phase transition 4, Summary

2, 2, Quarks above CSC phase transition T 

Nature of CSC strong coupling! weak coupling  ~ 100MeV  / E F ~ 0.1  / E F ~ in electric SC Large pair fluctuations can Short coherence length . Mean field approx. works well. Matsuzaki, PRD62, (2000) Abuki, Hatsuda, Itakura, PRD 65, (2002) cf.) Bosonization of Cooper pairs invalidate MFA. cause precursory phenomena of CSC. There exist large fluctuations of pair field.

ペア場のゆらぎペア場のゆらぎ 二次相転移点では、秩序変数のゆらぎが発散。 ペア場  (x) for CSC F(  )  T c で原点に到達 ソフトモード T  カラー超伝導 ペア場のゆらぎは、 集団モードを形成する。 極 クォーク対

Pair Fluctuations in Superconductors electric conductivity   ~10 -3 enhancement above T c Precursory Phenomena in Alloys Electric Conductivity Specific Heat etc… Thouless, 1960 Aslamasov, Larkin, 1968 Maki, 1968, … High-T c Superconductor(HTSC) large fluctuations induced by strong coupling and quasi-two dimensionality pseudogap 1986~in quasi-two-dimensional cuprates

Quasi-particle energy: Density of State: Quarks in BCS Theory

The origin of the pseudogap in HTSC is still controversial. :Anomalous depression of the density of state near the Fermi surface in the normal phase. Pseudogap Conceptual phase diagram Renner et al.(‘96)

Nambu-Jona-Lasinio model (2-flavor,chiral limit) :  : SU(2) F Pauli matrices : SU(3) C Gell-Mann matrices C :charge conjugation operator so as to reproduce Parameters: Klevansky(1992), T.M.Schwarz et al.(1999) M.K. et al., (2002) 2SC is realized at low  and near T c. We neglect the gluon degree of freedom. Notice: NJL model

expectation value of induced pair field: external field: Linear Response Retarded Green function Fourier Transformation Response Function of Pair Field T-matrix

Rondom Phase Approx. (RPA)  ()() Thouless Criterion D R (0,0) diverges at T C - for second order phase transitions D.J. Thouless, AoP 10,553(1960) r.h.s. is equal to zero at T c due to the critical conditon. The fluctuation diverges at T c. Thermodynamic Potential

Softening of Pair Fluctuations Dynamical Structure Factor T =1.05T c The peak grows from e ~ 0.2 electric SC : e ~  = 400 MeV

Softening of Pair Fluctuations Dynamical Structure Factor T =1.05T c  = 400 MeV The peak grows from e ~ 0.2 electric SC : e ~ Pole of Collective Mode pole: The pole approaches the origin as T is lowered toward T c. (the soft-mode of the CSC)

T-matrix Approximation Quark Green function : Decomposition of G: quark part :projection op.

Spectral Function of Quarks Spectral Function Density of State N(  ) from parity and rotational invariance vanishes in the chiral limit spectral function of baryon density

The pseudogap survives up to  =0.05~0.1 ( 5~10% above T C ). Numerical Result : Density of State

 0 ( ,k)  = 400 MeV  =0.01 Spectral Function of Quarks k  0  [MeV] quasi-particle peak,  =    k)~ k  Depression at Fermi surface Im   ,k=k F )  [MeV] The peak in Im  around  =0 owing to the decaying process: k [MeV] kFkF kFkF

Im   ,k) quasi-particle peak w = m –k peak of Im S w =k– m : collective mode : on-shell  |Im   | has peaks around  =  k, which is found to be the hole energy. |Im  - | k coincide at fermi surface. Re   ,k) w = m –k  -- 0  k Peak of |Im   | kFkF

Dispersion Relation of Quarks  =   (p) rapid increase around  =0  [MeV] k [MeV]  k kFkF 0  k kFkF Normal Super cf.)  = 400 MeV  =0.01

Dispersion Relation of Quarks  =   (p) rapid increase around  =0  [MeV] k [MeV] Re   ,k=k F )  [MeV]  = 400 MeV  =0.01 w.f. renormalization  still Fermi-liquid-like However,

stronger diquark coupling G C Diquark Coupling Dependence GCGC ×1.3×1.5  = 400 MeV  =0.01

Resonant Scattering of Quarks G C =4.67GeV -2 Janko, Maly, Levin, PRB56,R11407 (1995)

Resonant Scattering of Quarks G C =4.67GeV -2 Mixing between quarks and holes  k  n f (  ) kFkF

Level Repulsion    p pFpF

Quarks at very high T 1-loop (g<<1) Hard Thermal Loop ( p, , m q <<T ) dispersion relations plasmino

Quarks at very high T 1-loop(g<<1) Hard Thermal Loop approximation( p, , m q <<T ) dispersion relations

3, 3, Quarks above chiral phase transition T 

Soft Mode of Chiral Transition Response Fucntion D(k,  )  fluctuations of the chiral order parameter Spectral Function ε→ 0 (T → T C ) for k=0 T  Hatsuda, Kunihiro ( ’ 85) scalar and pseudoscalar parts

Sigma Mode above T c Hatsuda, Kunihiro ( ’ 85) sharp peak in time-like region  -mode Spectral Function soft mode of CSC k  k  sharp peak around  = k =0

Quark Self-enrgy Quark Green function : :free quark progagator Self-energy: in the chiral limit

Spectral Function of Quarks  [MeV] k [MeV]  = 0 MeV  = 0.05 quark part  - ( ,k) sharp peak with negative dispersion k [MeV]  [MeV] quasiparticle peak  ~ k

Self Energy k [MeV]  [MeV] Two peaks in Im  produces five solutions of the dispersion relation.

Spectral Function of Quarks  [MeV] k [MeV]  = 0 MeV  = 0.05 positive energy part  - ( ,k) k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV]

Resonant Scatterings of Quarks These resonant scatterings affect the peaks of the spectral functions in a non-trivial way.

Level Repulsion   m>m> m=m= dispersion relation m,-m for the CSC

Self Energy

k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV] T dependence  = 0.05

k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV] T dependence  = 0.1

k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV] T dependence  = 0.15

k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV] T dependence  = 0.2

k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV] T dependence  = 0.25

k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV] T dependence  = 0.3

k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV] T dependence  = 0.35

k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV] T dependence  = 0.4

k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV] T dependence  = 0.5

SummarySummary The soft mode associated with the chiral and color-superconducting phase transitions drastically modifies the property of quarks near T c. above CSC phase: Gap-like structure manifests itself!  resonant scattering of quarks Future: finite quark mass, finite density, phenomenological applications above chiral transition: Three peak structure appears!  two resonant scatterings of quarks and anti-quarks