Dr. Max Mustermann Referat Kommunikation & Marketing Verwaltung Daniel Steininger AG Strunk / Institut für Exp. und Angewandte Physik FAKULTÄT FÜR PHYSIK.

Slides:



Advertisements
Similar presentations
Abteilung Festkörperphysik Solid State Physics University of Ulm Abteilung Festkörperphysik Solid State Physics University of Ulm Note that 1µm =
Advertisements

Electrical Properties of Defects in Carbon Nanotubes Brett Goldsmith UC Irvine Department of Physics and Astronomy Collins Group.
Niels Bohr Institute – University of Copenhagen
Electrical transport and charge detection in nanoscale phosphorus-in-silicon islands Fay Hudson, Andrew Ferguson, Victor Chan, Changyi Yang, David Jamieson,
Dual Coil Micro-Speaker EMCR870 MEMS Fabrication February Chris Nassar Chris Nassar.
Controlling ac transport in carbon- based Fabry-Perot devices Claudia Gomes da Rocha University of Jyvaskyla, Finland Dresden University of Technology,
QUANTUM TRANSPORT IN THE TUNNELING AND COTUNNELING REGIMENS Javier F. Nossa M.
TI Information – Selective Disclosure 1 Characterizing Bias Current Spikes A wideband transimpedance amplifier was used to directly view the input current.
Scaling up a Josephson Junction Quantum Computer Basic elements of quantum computer have been demonstrated 4-5 qubit algorithms within reach 8-10 likely.
Alexei O. Orlov Department of Electrical Engineering University of Notre Dame, IN, USA Temperature dependence of locked mode in a Single-Electron Latch.
Laterally confined Semiconductor Quantum dots Martin Ebner and Christoph Faigle.
Electrical Noise Wang C. Ng.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin Condensed matter seminar, BGU.
Application to transport phenomena  Current through an atomic metallic contact  Shot noise in an atomic contact  Current through a resonant level 
The Shot Noise Thermometer
Kondo Effects in Carbon Nanotubes
Origin of Coulomb Blockade Oscillations in Single-Electron Transistors
The Ideal Electron Gas Thermometer Lafe Spietz, K.W. Lehnert, I. Siddiqi, R.J. Schoelkopf Department of Applied Physics, Yale University Thanks to: Michel.
An Electronic Primary Thermometer Based on Thermal Shot Noise Lafe Spietz K.W. Lehnert, R.J. Schoelkopf Department Of Applied Physics, Yale University.
The Ideal Electron Gas Thermometer
The Shot Noise Thermometer Lafe Spietz, K.W. Lehnert, I. Siddiqi, R.J. Schoelkopf Department of Applied Physics, Yale University Thanks to: Michel Devoret,
Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental.
High-Speed Circuits & Systems Laboratory Electronic Circuits for Optical Systems : Transimpedance Amplifier (TIA) Jin-Sung Youn
Lock-in amplifiers
FREE CARRIER ABSORPTION TECHNIQUES - MICROWAVE & IR –
INAC The NASA Institute for Nanoelectronics and Computing Purdue University Circuit Modeling of Carbon Nanotubes and Their Performance Estimation in VLSI.
InAs on GaAs self assembled Quantum Dots By KH. Zakeri sharif University of technology, Spring 2003.
Sebastian Böser Acoustic sensor and transmitter development Amanda/IceCube Collaboration Meeting Berkeley March 2005.
Single-shot read-out of one electron spin
An Electronic Calibration Scheme for Logarithmic CMOS Pixels Bhaskar Choubey, Satoshi Ayoma*, Stephen Otim, Dileepan Joseph**, Steve Collins, University.
Figure Schematic depicting tunneling across a normal-insulator- normal (NIN) junction at T=0. (Reproduced with kind permission of J. Hergenrother.)
Fermi-Edge Singularitäten im resonanten Transport durch II-VI Quantenpunkte Universität Würzburg Am Hubland, D Michael Rüth, Anatoliy Slobodskyy,
Measurement of Integrated PA-to-LNA Isolation on Si CMOS Chip Ryo Minami , JeeYoung Hong , Kenichi Okada , and Akira Matsuzawa Tokyo Institute of Technology,
VI th INTERNATIONAL MEETING ON FRONT END ELECTRONICS, Perugia, Italy A. Dorokhov, IPHC, Strasbourg, France 1 NMOS-based high gain amplifier for MAPS Andrei.
Absorption Spectra of Nano-particles
Contacting single bundles of carbon nanotubes with alternating electric fields Marcella De Carlo Danilo Zampetti.
By Francesco Maddalena 500 nm. 1. Introduction To uphold Moore’s Law in the future a new generation of devices that fully operate in the “quantum realm”
“End station A setup” data analysis Josef Uher. Outline Introduction to setup and analysis Quartz bar start counter MA and MCP PMT in the prototype.
UNIVERSITY OF NOTRE DAME Origin of Coulomb Blockade Oscillations in Single-Electron Transistors Fabricated with Granulated Cr/Cr 2 O 3 Resistive Microstrips.
Sanae Boulay, Limelette, Nov 05 th 20091/20 S. Boulay, B. Boudjelida, A. Sharzad, N. Ahmad, M. Missous Novel Ultra Low Noise Amplifiers based on InGaAs/InAlAs.
Positive HBT/noise cross-correlations in superconducting hybrids: Role of disorder R. Melin, C. Benjamin and T. Martin, Phys. Rev. B 77, (2008)
Radio-frequency single-electron transistor (RF-SET) as a fast charge and position sensor 11/01/2005.
M. F. Goffman. Topics on Molecular Electronics M. F. Goffman Laboratoire d’Électronique Moléculaire CEA Saclay.
Introduction LNA Design figure of merits: operating power consumption, power gain, supply voltage level, noise figure, stability (Kf & B1f), linearity.
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
Seung Hyun Park Hyperfine Mapping of Donor Wave Function Deformations in Si:P based Quantum Devices Seung Hyun Park Advisors: Prof. Gerhard Klimeck Prof.
EE 230: Optical Fiber Communication Lecture 12
Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and.
Electrical control over single hole spins in nanowire quantum dots
Sid Nb device fabrication Superconducting Nb thin film evaporation Evaporate pure Nb to GaAs wafer and test its superconductivity (T c ~9.25k ) Tc~2.5K.
Single Electron Transistor (SET)
Singlet-Triplet and Doublet-Doublet Kondo Effect
Progress Report: Tools for Quantum Information Processing in Microelectronics ARO MURI (Rochester-Stanford-Harvard-Rutgers) Third Year Review, Harvard.
Journal Club február 16. Tóvári Endre Resonance-hybrid states in a triple quantum dot PHYSICAL REVIEW B 85, (R) (2012) Using QDs as building.
Charge pumping in mesoscopic systems coupled to a superconducting lead
THE KONDO EFFECT IN CARBON NANOTUBES
Technical Meeting Diamond Detector Characterization in Frascati F. Burkart F. Burkart, O. Stein.
Electron Screening in deuterated targets ©Francesco Raiola Raiola Francesco, Fakultät für Physik und Astronomie Ruhr-Universität Bochum, D Bochum,
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
Developing a Versatile Platform for Nanoscale Materials Characterization Julia Bobak, Daniel Collins, Fatemeh Soltani, David W. Steuerman Department of.
Siwon Jang Hoyeong Jeong Glenn Christian Talitha Bromwich
Circuit QED Experiment
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Warm-ups & Ticket Outs Atomic Unit.
Lock-in amplifiers
RESONANT TUNNELING IN CARBON NANOTUBE QUANTUM DOTS
Characterizing Bias Current Spikes
The Fill Pattern Monitor For the Australian Synchrotron
Precision Beam Monitors for COSY Jülich
Quantum squeezing of motion in a mechanical resonator
Presentation transcript:

Dr. Max Mustermann Referat Kommunikation & Marketing Verwaltung Daniel Steininger AG Strunk / Institut für Exp. und Angewandte Physik FAKULTÄT FÜR PHYSIK Shot noise of excited states in a CNT quantum dot

5µm Pd Re QDQD SD Gate Double Quantum Dot Layout: source, drain, SC central contact, 2 sidegates Operated as single quantum dot (QD) Transport dominated by Coulomb Blockade: Sample setup: -e-beam lithography -Metallization: Sputter (Re) Thermal (Pd)

Coulomb peaks when state is aligned within the bias window Without excited states: Excited states included: „Coulomb Diamond“ pattern Additional steps in Current Coulomb Blockade:

Noise: Noise gives additional information which is discarded in standard DC measurements a)b)

Sources of Noise: Thermal Noise Shot Noise

Sub-/Super Poissonian Noise: Super-poissonian (F > 1): -Electron bunching due to cotunneling and/or blocking states (see later…)

Measurement Circuit: Low frequencies (lock-in) High frequencies (noise) Gain: 1.09 high-frequencies low-frequencies

System calibration (in situ): Differences in peak amplitude visible down to T=20mK

Two different slopes of the Coulomb diamonds – Two CNTs? Sample Characterization: Stability diagram:

90 meV 80 meV 10 meV 20 meV Two sets of Coulomb diamonds: S D Possible configuration: 2 CNTs in parallel APL 78, 3693 (2001) 5µm

Current: dI/dV: Stability Diagram:

Excited states What kind of excitations? Electronic or Vibronic? Yar et al. PRB 84, (2011) Pro vibronic: - excitations are equidistant - alternating pattern: pos./neg. dI/dV

Comparison Franck-Condon model From experiment:

20mK 4.2K 300K Spectrum Analyzer 66uH 150 Ω 2.0nF 1K Ω 2.2 nF 10nF 50 Ω 22nF MITEQ – AU 1447 coax. DC1 100Ω 1kΩ 100kΩ 1K Ω 10K Ω LI 1 DMM1 ~ 10M Ω 100kΩ 1.1nF I-V π-filter ATF x1100 Sample Noise Measurements: 1Ω Low frequencies (lock-in) High frequencies (noise) RLC-Circuit Cryo-Amp f-Splitter 66uH 2.0nF coax.

> Remove distortions by cutting > Do Lorentzian fit > Complete spectrum for every data point (pixel) Data Processing: Current Averaging time: t=10s Current noise

Fano-Map: - Pattern of different Fano factors -Super Poissonian noise on excited states -Enhanced Fano factors on NDC-areas Modelling/Simulations required to explain this pattern and distinguish different mechanisms (vibronic or electronic)

t Origin of Super Poissonian Noise (F>1): … …

DC Current: dI/dV: Current Noise (S I ): Different gate regime:

Steps in Fano Factor: Bias Voltage

F=0.5 F=1 F=10 S I vs Current: F=0.5 F=1 F= Current F=0.5 F=1 F=10

Summary: Outlook: Modelling our experimental results Repeat measurements with higher quality QDs (suspendended CNTs) Use two amplifier chains to increase resolution (cross-correlations)  2 amps already implemented, waiting for samples! Spectrum Analyzer Thank you for your attention! Thank you for your attention!

20mK 4.2K 300K Spectrum Analyzer DC1 1Ω 100Ω 1kΩ 100kΩ LI 1 DMM1 ~ 100kΩ I-V π-filter 66uH 2.0nF coax. 10M Ω ~130 pF 150 Ω 1K Ω 10nF 50 Ω 22nF AU K Ω 10K Ω π-filter ATF x1100 Sample DC2 1Ω 100Ω 1kΩ LI 2 ~ 150 Ω 1K Ω 10nF 50 Ω 22nF AU K Ω 10K Ω 1.1nF π-filter ATF x kΩ π-filter 66uH 2.0nF coax. 10M Ω ~130 pF 1.1nF