ME451 Kinematics and Dynamics of Machine Systems Driving Constraints 3.5 Start Position, Velocity, and Acc. Analysis 3.6 February 26, 2009 © Dan Negrut,

Slides:



Advertisements
Similar presentations
ME751 Advanced Computational Multibody Dynamics Section 9.3 February 18, 2010 © Dan Negrut, 2010 ME751, UW-Madison Discontent is the first necessity of.
Advertisements

CH 2: 1D motion.
© 2011 Autodesk Freely licensed for use by educational institutions. Reuse and changes require a note indicating that content has been modified from the.
ME751 Advanced Computational Multibody Dynamics Section 9.2 February 2, 2010 © Dan Negrut, 2010 ME751, UW-Madison “My own business always bores me to death;
ME751 Advanced Computational Multibody Dynamics Inverse Dynamics Equilibrium Analysis Various Odd Ends March 18, 2010 © Dan Negrut, 2010 ME751, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Relative Kinematic Constraints, Composite Joints – 3.3 October 4, 2011 © Dan Negrut, 2011 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Cam-Follower Constraints – 3.3 Driving Constraints – 3.5 October 11, 2011 © Dan Negrut, 2011 ME451, UW-Madison.
ME751 Advanced Computational Multibody Dynamics Section 9.2 February 9, 2010 © Dan Negrut, 2010 ME751, UW-Madison “In England, if you commit a crime, the.
Chris Hall Aerospace and Ocean Engineering
ME 440 Intermediate Vibrations
Physics 218, Lecture V1 Physics 218 Lecture 5 Dr. David Toback.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Newton-Raphson Method October 04, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Review of Elements of Calculus – 2.5 Vel. and Acc. of a Point fixed in a Ref Frame – 2.6 Absolute vs.
ME751 Advanced Computational Multibody Dynamics Introduction January 21, 2010 Dan Negrut University of Wisconsin, Madison © Dan Negrut, 2010 ME751, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Review of Matrix Algebra – 2.2 Review of Elements of Calculus – 2.5 Vel. and Acc. of a point fixed in.
ME451 Kinematics and Dynamics of Machine Systems Review of Matrix Algebra – 2.2 September 13, 2011 Dan Negrut University of Wisconsin-Madison © Dan Negrut,
ME451 Kinematics and Dynamics of Machine Systems
ME751 Advanced Computational Multibody Dynamics Review Calculus Starting Chapter 9 of Haug book January 26, 2010 © Dan Negrut, 2010 ME751, UW-Madison "Motivation.
February 21, 2000Robotics 1 Copyright Martin P. Aalund, Ph.D. Computational Considerations.
ME451 Kinematics and Dynamics of Machine Systems Review of Linear Algebra 2.1 through 2.4 Th, Sept. 08 © Dan Negrut, 2011 ME451, UW-Madison TexPoint fonts.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Singular Configurations of Mechanisms 3.7 October 26, 2010 © Dan Negrut, 2010 ME451, UW-Madison TexPoint.
ME451 Kinematics and Dynamics of Machine Systems Numerical Solution of DAE IVP Newmark Method November 1, 2013 Radu Serban University of Wisconsin-Madison.
ME 440 Intermediate Vibrations Th, Feb. 5, 2009 Section 2.2 and 2.6 © Dan Negrut, 2009 ME440, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 11, , 6.1.4, 6.2, starting 6.3 © Dan Negrut, 2010 ME451,
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 1, 2011 Solving Index 3 DAEs using Newmark Method © Dan Negrut, 2011.
ME 440 Intermediate Vibrations Th, March 26, 2009 Chapter 5: Vibration of 2DOF Systems © Dan Negrut, 2009 ME440, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Review of Linear Algebra 2.1 through 2.4 Tu, Sept. 07 © Dan Negrut, 2009 ME451, UW-Madison TexPoint fonts.
ME751 Advanced Computational Multibody Dynamics Section 9.3 February 16, 2010 © Dan Negrut, 2010 ME751, UW-Madison “Courage is fear holding on a minute.
ME751 Advanced Computational Multibody Dynamics Section 9.6 February 25, 2010 © Dan Negrut, 2010 ME751, UW-Madison “In China if you are one in a million.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Review of Linear Algebra 2.1, 2.2, 2.3 September 06, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Vel. And Acc. of a Fixed Point in Moving Frame Basic Concepts in Planar Kinematics February.
ME451 Kinematics and Dynamics of Machine Systems Basic Concepts in Planar Kinematics 3.1, 3.2 September 18, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Driving Constraints 3.5 October 19, 2010 © Dan Negrut, 2010 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Introduction to Dynamics 6.1 October 09, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Singular Configurations 3.7 October 07, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Driving Constraints 3.5 September 30, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Review of Differential Calculus 2.5, 2.6 September 11, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems March 31, , starting 6.3 © Dan Negrut, 2009 ME451, UW-Madison Quote.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 10, , starting 6.3 © Dan Negrut, 2011 ME451, UW-Madison TexPoint.
ME451 Kinematics and Dynamics of Machine Systems Composite Joints – 3.3 Gears and Cam Followers – 3.4 February 17, 2009 © Dan Negrut, 2009 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems May 07, 2009 EOM in non-Cartesian Reference Frames ~ not in textbook~ Quote.
ME 440 Intermediate Vibrations Th, April 16, 2009 Chapter 6: Multi-degree of Freedom (MDOF) Systems © Dan Negrut, 2009 ME440, UW-Madison Quote of the Day:
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 08, , 6.1.4, 6.2, starting 6.3 © Dan Negrut, 2011 ME451,
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 16, , starting 6.3 © Dan Negrut, 2010 ME451, UW-Madison TexPoint.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 6, 2011 Equilibrium Analysis & Inverse Dynamics Analysis ME451 Wrap.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Relative Kinematic Constraints, Composite Joints – 3.3 October 6, 2011 © Dan Negrut, 2011 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Newton-Raphson Method 4.5 Singular Configurations of Mechanisms 3.7 March 5, 2009 © Dan Negrut, 2009 ME451,
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 9, 2010 Solving Index 3 DAEs using Newmark Method © Dan Negrut, 2010.
ME451 Kinematics and Dynamics of Machine Systems Start Position, Velocity, and Acc. Analysis 3.6 October 21, 2010 © Dan Negrut, 2010 ME451, UW-Madison.
ME 440 Intermediate Vibrations Tu, Feb. 3, 2009 Sections , © Dan Negrut, 2009 ME440, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Composite Joints – 3.3 Gears and Cam Followers – 3.4 October 5, 2010 © Dan Negrut, 2010 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Absolute Constraints 3.2 September 20, 2013 Radu Serban University of Wisconsin-Madison.
ME751 Advanced Computational Multibody Dynamics Section 9.4 February 23, 2010 © Dan Negrut, 2010 ME751, UW-Madison “When You Come to a Fork in the Road,
ME451 Kinematics and Dynamics of Machine Systems Newton-Raphson Method 4.5 October 28, 2010 © Dan Negrut, 2010 ME451, UW-Madison TexPoint fonts used in.
ME451 Kinematics and Dynamics of Machine Systems Relative Constraints 3.3 September 23, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems March 26, , © Dan Negrut, 2009 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Review of Elements of Calculus – 2.5 Vel and Acc of a Point fixed in a Ref Frame – 2.6 Jan. 29, 2009 ©
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 4, 2010 Chapter 6 © Dan Negrut, 2010 ME451, UW-Madison TexPoint fonts.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 9, 2010 Solving Index 3 DAEs using Newmark Method © Dan Negrut, 2010.
Character Animation Forward and Inverse Kinematics
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems
KINEMATIC CHAINS & ROBOTS (I)
CHAPTER 3-2. Planar Cartesian Kinematics
Presentation transcript:

ME451 Kinematics and Dynamics of Machine Systems Driving Constraints 3.5 Start Position, Velocity, and Acc. Analysis 3.6 February 26, 2009 © Dan Negrut, 2009 ME451, UW-Madison

Before we get started… Today: Continue with relative driving constraints Proper Kinematic Analysis: Position, Velocity, and Acceleration Stages HW due next Th (Mar. 5): 3.5.1, 3.5.4, 3.5.5, 3.5.6, ADAMS 3.5.5: note that the angle  2 is not displayed correctly 3.5.6: get rid of v i, take it unit vector ADAMS problem: posted online Last Time Finished kinematic constraints Point-Follower Started to talk about driving constraints A set of ndof independent drivers need to be specified to “occupy” all the degrees of freedom Driver constraints  Absolute: x, y,   Relative: we’ve only talked about relative distance driver 2

Example: Specifying Relative Distance Drivers Generalized coordinates: 3 Motions prescribed: Derive the constraints acting on system Derive linear system whose solution provides velocities

Revolute Rotational Driver The framework: at point P we have a revolute joint It boils down to this: you prescribe the time evolution of the angle in the revolute joint 4 Driver constraint formulated as Note that  i and  j are attributes of the constraint

Translational Distance Driver The framework: we have a translational joint between two bodies Direction of translational join on “Body i” is defined by the vector v i 5 This driver says that the distance between point P i on “Body i” and point P j on “Body j” measured along in the direction of changes in time according to a user prescribed function C(t):

Translational Distance Driver (Cntd.) The book complicates the formulation with no good reason There is nothing to prevent me to specify the direction v i by selecting this quantity to have magnitude 1 Equivalently, the constraint then becomes Keep in mind that the direction of translation is indicated now through a unit vector (you are going to get the wrong motion if you work with a v i that is not unit length) This is the reason why I wanted to discuss this prior to assigning the problem

Driver Constraints, Departing Thoughts What is after all a driving constraint? You take your kinematic constraint, which indicates that a certain kinematic quantity should stay equal to zero Rather than equating this kinematic quantity to zero, you have it change with time… 7 Or equivalently…

Notation used: For Kinematic Constraints:  K (q) For Driver Constraints:  D (q,t) Note the arguments (for K, there is no time dependency) Correcting the RHS… Computing for Driver Constraints the right hand side of the velocity equation and acceleration equation is straightforward Once you know who to compute these quantities for  K (q), when dealing with  D (q,t) is just a matter of correcting… … (RHS of velocity equation) with the first derivative of C(t) …  (RHS of acceleration equation) with second derivative of C(t) Section discusses these issues 8 Driver Constraints, Departing Thoughts (cntd.)

End Driving Constraints Begin Pos Vel Acc Analysis (3.6) 9

Mechanism Analysis: Steps Step A: Identify *all* physical joints and drivers present in the system Step B: Identify the corresponding constraint equations  (q,t) Step C: Solve for the Position as a function of time (  q is needed) Step D: Solve for the Velocities as a function of time ( is needed) Step E: Solve for the Accelerations as a function of time (  is needed) 10

Position, Velocity, and Acceleration Analysis (3.6) The position analysis [Step C]: It’s the tougher of the three Requires the solution of a system of nonlinear equations What you are after is determining at each time the location of every component (body) of the mechanism The velocity analysis [Step D]: Requires the solution of a linear system of equations Relatively simple Carried out after you are finished with the position analysis The velocity analysis [Step E]: Requires the solution of a linear system of equations What is challenging is generating the RHS of acceleration equation,  Carried out after you are finished with the position and velocity analyses 11

Position Analysis Framework: Somebody presents you with a mechanism and you select the set of nc generalized coordinates to position and orient each body of the mechanism: 12 You inspect the mechanism and identify a set of nk kinematic constraints that must be satisfied by your coordinates: Next, you identify the set of nd driver constraints that move the mechanism: NOTE: YOU MUST HAVE nc = nk + nd

We end up with this problem: given a time t, find that set of generalized coordinates q that satisfy the equations: What’s the idea here? Set time t=0, and find a solution q by solving above equations Next, set time t=0.001 and find a solution q by solving above equations Next, set time t=0.002 and find a solution q by solving above equations Next, set time t=0.003 and find a solution q by solving above equations … Stop when you reach the end of the interval in which you are interested in the position What you do is find the time evolution on a time grid with step size  t=0.001 You can then plot the solution as a function of time and get the time evolution of your mechanism 13 Position Analysis

Two issues with the described methodology for finding the time evolution of the mechanism The equations that we have to solve at each time t are nonlinear, so a first hurdle is being able to solve this nonlinear system Deal with this issue later (next week, Newton-Raphson method) The second issue comes when you start thinking about the solution that you’ve just got using a numerical algorithm How do you know that what you got is a meaningful thing?  Remember, a nonlinear system can have an arbitrary number of solutions Deal with this issue now 14 Position Analysis

Is the solution of our nonlinear system well behaved? A sufficient condition is provided by the Implicit Function Theorem In layman’s words, this is what the theorem says: Let’s say that we are at some time t k, and we just found the solution q k and we question the quality of this solution If the constraint Jacobian is nonsingular in this configuration, that is, … then, we can conclude that the solution is unique, and not only at t k, but in a small interval  about time t k. Additionally, in this small time interval, there is an explicit functional dependency of q on t, that is, there is a function f(t) such that: 15 Position Analysis: Implicit Function Theorem

End Position Analysis Begin Velocity Analysis 16