LECTERE 5 THEME: AMINO ACIDS, PEPTIDES AND PROTEINS.

Slides:



Advertisements
Similar presentations
Amino Acids and Proteins B.2. there are about 20 amino acids that occur naturally they are the basic “building blocks” of life/proteins.
Advertisements

PROTEINS Proteins are the most complex and most diverse group of biological compounds. If you weigh about 70 kg: About 50 of your 70 kg is water. Many.
Protein Structure and Function Review: Fibrous vs. Globular Proteins.
Chapter 16 Amino Acids, Proteins, and Enzymes
Proteins include a diversity of structures, resulting in a wide range of functions Protein functions include structural support, storage, transport, enzymes,
They contain C, H, O, N In some P, S, Mg or Fe are present Proteins are the most diverse biological molecules. They can either function as structral or.
Introduction The food we consume is divided into three main classes: 1.Carbohydrates: the body’s most readily available energy source. 2.Lipids: the body’s.
19.6 Primary Structure The primary structure of a protein is the sequence of amino acids in the peptide chain Protein backbone Ala-Leu-Cys-Met.
Proteins. Other than water, protein are the chief constituents of the cells of the body. Proteins are much more complex than carbohydrates or lipids.
Proteins account for more than 50% of the dry mass of most cells
Biomolecules: Nucleic Acids and Proteins
Proteins account for more than 50% of the dry mass of most cells
Diverse Macromolecules. V. proteins are macromolecules that are polymers formed from amino acids monomers A. proteins have great structural diversity.
19.1 Proteins and Amino Acids
7.5: PROTEINS Proteins Function Structure. Function 7.5.4: State four functions of proteins, giving a named example of each. [Obj. 1] Proteins are the.
Chapter 19 Amino Acids and Proteins
Biochemistry - as science; Structure, properties and biological functions of proteins. Methods of secretion and purification. Peptides. Complex proteins,
Amino Acids and Proteins B.2. Properties of 2-amino acids (B.2.2) Zwitterion (dipolar) – amino acids contain both acidic and basic groups in the same.
Chapter 14 Proteins Chemistry 20. Function of proteins Fibrinogen helps blood clotting.
Proteins!. Proteins Proteins account for more than 50% of the dry mass of most cells Monomer: amino acids 20 amino acids used in cells Central carbon.
INTRODUCTION TO BIOCHEMISTRY AND CARBOHYDRATES BY DR. MARYJANE.
AMINO ACIDS, PEPTIDES AND PROTEINS LECTERE 7 Lecturer: Dmukhalska Ye. B.
  Lecture on the topic: А mino acids and proteins. For the 1st year students of specialty “General medicine". Discipline: Chemistry. Lecturer: PhD, Associate.
Lipids Hydrophobic molecules  Carbons bound to hydrogens are not polar Most often found as fatty-acid  Carboxyl group at one end  Carbon/hydrogen chain.
THE STRUCTURE AND FUNCTION OF MACROMOLECULES Proteins - Many Structures, Many Functions 1.A polypeptide is a polymer of amino acids connected to a specific.
Introduction to Proteins
II- Classification according to polarity of side chain (R): A- Polar amino acids: Polar side chains contain groups that are either charged at physiological.
PROTEIN FUNCTIONS. PROTEIN FUNCTIONS (continued)
Proteins.
Amino acids link together (right) to form proteins.
Amino Acids, Peptides, and Proteins. Introduction to Amino Acids  There are about 26 amino acids, many others are also known from a variety of sources.
Proteins Protos “of prime importance” Big Idea: Proteins perform the actions of the cell, they are coded for by the DNA. DNA is the principal, proteins.
PROTEINS L3 BIOLOGY. FACTS ABOUT PROTEINS: Contain the elements Carbon, Hydrogen, Oxygen, and NITROGEN Polymer is formed using 20 different amino acids.
A PRESENTATION ON AMINO ACIDS AND PROTEINS PRESENTED BY SOMESH SHARMA Chemical Engineering Arham Veerayatan Institute of Engineering Technology.
3.8 Fats are lipids that are mostly energy-storage molecules  Some fatty acids contain double bonds –This causes kinks or bends in the carbon chain because.
Proteins  Are the most diverse biomolecules. They make up muscles, skin, hair, enzymes, hormones, hemoglobin, and antibodies.  The basic structure unit.
Chemistry: An Introduction to General, Organic, and Biological Chemistry, Eleventh Edition Copyright © 2012 by Pearson Education, Inc. Chapter 16 Amino.
Amino Acids. Amino acids are used in every cell of your body to build the proteins you need to survive. Amino Acids have a two-carbon bond: – One of the.
AMINO ACIDS and PROTEIN
Peptides to Proteins. What are PROTEINS? Proteins are large, complex molecules that serve diverse functional and structural roles within cells.
سمية شعراوي غرفة 2132 الساعات المكتبية
Protein chemistry Lecture Amino acids are the basic structural units of proteins consisting of: - Amino group, (-NH2) - Carboxyl group(-COOH)
Biochemistry - as science; biomolecules; metabolic ways
Proteins account for more than 50% of the dry mass of most cells
Lecture 3   Proteins Proteins consist of amino-acids linked together in chains through peptide bonds. An amino acid consists of a carbon atom bound to.
Protein Folding.
Amino Acids, Proteins, and Enzymes
Protein Chemistry Chemical structure are the vocabulary of biochemistry. Prof. Dr. Zeliha Büyükbingöl.
Proteins Types Function/Example
Proteins.
Proteins.
Transport proteins Transport protein Cell membrane
Conformationally changed Stability
Proteins Topic 7.5.
Proteins account for more than 50% of the dry mass of most cells
Proteins Topic 7.5.
Fundamentals of Organic Chemistry
Chapter 19: Proteins.
Introduction and Fundamentals of Protein Structure
Proteins account for more than 50% of the dry mass of most cells
Conformationally changed Stability
Introduction and Fundamentals of Protein Structure
Fundamentals of Organic Chemistry
Fundamentals of Organic Chemistry
Chapter 4: Proteins By Prof. Sanjay A. Nagdev
Fundamentals of Organic Chemistry
Proteins.
Fundamentals of Organic Chemistry
Fundamentals of Organic Chemistry
Presentation transcript:

LECTERE 5 THEME: AMINO ACIDS, PEPTIDES AND PROTEINS.

PLAN  Biological role of amino acids and proteins  Classification of amino acids.  Structure of amino acids.  Chemical properties of amino acids.  Peptides.  Proteins: levels of structure of proteins.  Proteins: levels of structure of proteins.  Compound proteins.

 А protein is in polymer in which the monomer units are aminoacids. Thus the starting point for а discussion of proteins is an understanding of the structures and chemical properties of aminoacids.  The word protein comes from the Greek proteios, which means "of first importance." This derivation alludes to the key role that proteins play in life processes. PROTEIN

 Proteins are the most abundant substances in most cells - from 10% to 20% of the cell’s mass.  More than % of dry weight of muscles, lungs, kidneys, spleen; 57 % of dry weight of liver, 45 % of dry weight of brain are proteins. The lowest proteins constituting in bones and teeth (20 and 18 % responding).  Contents of chemical elements in proteins: carbon is %, oxygen is %, nitrogen is %, hydrogen is 6-7 %, sulfur is %. Some proteins contain phosphorus iron, zinc, copper and other elements - (0.2-2%).

AMINO ACIDS  An amino acid is an organic compound that contains both an amino (–NН 3 ) group and a carboxyl (-СООН) group. The amino acids found in proteins are always α-amino acids.

Classification of amino acids  Nonpolar amino acids contain one amino group, one carboxyl group, and a nonpolar side chain.  Polar neutral amino acids contain one amino group, one carboxyl group, and а side chain that is polar but neutral.  Polar acidic amino acids contain one amino group and two carboxyl groups, the second carboxyl group being part of the side chain. There are two polar acidic amino acids: aspartic acid and glutamic acid.  Polar basic amino acids contain two amino groups and one carboxyl group, the second amino group being part of the side chain. There are three polar basic amino acids: lysine, arginine, and histidine.

The most important aminoacids Glycine Alanine Valine Leucine Isoleucine Monoaminomonocarboxylic aminoacids

The most important aminoacids Ornytine Lysine Threonine Diaminomonocarboxylic aminoacids Mnoaminodicarboxylic aminoacids Glutamic acod Aspartic acid Serine Hydroxylaminoacids

Tyrosine Phenyalanine Methionine Cystine Cysteine The most important aminoacids Sulphorcontain aminoacids Aromatic aminoacids

The most important aminoacids Heterocyclic aminoacids TryptophaneProline Hydroxiproline Histidine Aminoacids with amide group Arginine

Essential and non-essential amino acids  All of the 20 amino acids are necessary constituents of human protein. Adequate amounts of 11 of the 20 amino acids can be synthesized from carbohydrates and lipids in the body if а source of nitrogen is also available. Because the human body is incapable of producing 9 of these 20 acids, these 9 amino acids, called essential amino acids, must be obtained from food. The human body can synthesize small amounts of some of the essential amino acids, but not enough to meet its needs, especially in the case of growing children.  The 9 essential amino acids for adults are histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. (In addition, arginine is essential for children).

Acidity Both an acidic group (-СООН) and а basic group (-NН 2 ) are present on the same carbon in an α-amino acid. The net result is that in neutral solution, amino acid molecules have the structure: А zwitterion is а molecule that has а positive charge on one atom and а negative charge on another atom.

Reaction of amino acids  Reaction with alcohols – esters formation:  Reaction with ammonia – amides formation:  Decarboxylation:  Salts are formed:

Deamination  oxidation deamination:  hydrolitic deamination:  intramolecular deamination:  redaction deamination:

Peptide formation  Two amino acids can react in а similar way - the carboxyl group of one amino acid reacts with the amino group of the other amino acid. The products are а molecule of water and а molecule containing the two amino acids linked by an amide bond.

Ninhydrin test. The ninhydrin colour reaction is the most commonly test used for the detection of alpha-amino acids. This is an extremely delicate test, to which proteins, their hydrolytic products, and α-amino acids react. When ninhydrin is added to а protein solution and the mixture is heated to boil, blue to violet colour appears on cooling. The colour is due to the formation of а complex compound.

React α-aminoacids with ninhydrin

amino acids and protein. Qualitative tests for amino acids and protein. XANTHOPROTEIC TEST. On treatment with concentrated nitric acid, certain proteins give yellow colour. This yellow colour is the same that is formed on the skin when the latter comes in contact with the concentrated nitric acid. The test is given only by the proteins having at least one mole of aromatic amino acid, such as tryptophan, phenylalanine, and tyrosine which are actually nitrated during treatment with concentrated nitric acid.

FOLL REACTION. This reaction reveals the sulfur containing amino acids (cysteine, cystine). Treatment of the sulfur containing amino acids with salt of lead and alkali yields a black sediment. ADAMKEVICH REACTION. This reaction detects the amino acid tryptophan containing indol ring. The addition of the concentrated acetic and sulfuric acids to the solution of tryptophan results in the formation of red-violet ring appearing on the boundary of different liquids.

Peptides  Short to medium-sized chains of amino acids are known as peptides. А peptide is а sequence of amino acids, of up to 50 units, in which the amino acids are joined together through amide (peptide) bonds. А compound containing two amino acids joined by а peptide bond is specifically called а dipeptide; three amino acids in а chain constitute а tripeptide; and so on. The name oligopeptide is loosely used to refer to peptides with 10 to 20 amino acid residues and polypeptide to larger peptides.

Proteins  Proteins are polypeptides that contain more than 50 amino acid units. The dividing line between а polypeptide and а protein is arbitrary. The important point is that proteins are polymers containing а large number of amino acid units linked by peptide bonds. Polypeptides are shorter chains of amino acids. Some proteins have molecular masses in the millions. Some proteins also contain more than one polypeptide chain.

Function of proteins  Catalysis. Enzymes, the proteins that direct and accelerate thousands of biochemical reactions  Structure. Some proteins function as structural materials that provide protection and support.  Movement. Proteins are involved in all types of cell movement. For example, actin, tubulin, and а variety of other proteins comprise the cytoskeleton.  Defense. А wide variety of proteins have а protective role. Examples found in vertebrates include keratin, the protein found in skin cells that aids in protecting the organism against mechanical and chemical injury. The blood-clotting proteins fibrinogen and thrombin prevent blood loss when blood vessels are damaged. The immuno-globulins (or antibodies) are produced by lymphocytes in response to the invasion of foreign organisms such as bacteria.  Regulation. The binding of а hormone molecule to its target cell results in specific changes in cellular function. Examples of peptide hormones include insulin and glucagon, which regulate blood glucose levels. Growth hormone stimulates cell growth and division.  Transport. Many proteins function as carriers of molecules or ions across membranes or between cells. Examples of membrane proteins include the Na + - К + ATPase and the glucose transporter. Other transport proteins include hemoglobin, which carries O 2 to the tissues from the lungs, and the lipoproteins, which transport lipids from the liver and intestines to other organs

Primary structure of а protein  The primary structure of а protein is the sequence of amino acids present in its peptide chain or chains.  The end with the free H 3 N + group is called the N- terminal end, and the end with the free СОО - group is called the С-terminal end.

Secondary structure of а protein  The secondary structure of а protein is the arrangement in space of the atoms in the backbone of the protein. Three major types of protein secondary structure are known; the alpha helix, the beta pleated sheet, and the triple helix. The major force responsible for all three types of secondary structure is hydrogen bonding between а carbonyl oxygen atom of а peptide linkage and the hydrogen atom of an amino group (-NH) of another peptide linkage farther along the backbone.

Alpha Helix  The Alpha Helix The alpha helix (α-helix) structure resembles а coiled helical spring, with the coil configuration maintained by hydrogen bonds between N – Н and С= О groups of every fourth amino acid

Beta pleated sheet  The beta pleated sheet (β-pleated sheet) secondary structure involves amino acid chains that are almost completely extended.

Tertiary structure The tertiary structure of а protein is the overall three-dimensional shape that results from the attractive forces between amino acid side chains (R groups) that are widely separated from each other within the chain. The tertiary structure of а protein is the overall three-dimensional shape that results from the attractive forces between amino acid side chains (R groups) that are widely separated from each other within the chain.

hydrogen bonds; hydrophobic attractions; Interactions responsible for tertiary structure covalent disulfide bonds; electrostatic attractions (salt bridges);

Electrostatic attractions (salt bridges), Hydrogen bonds,

Quaternary structure  Quaternary structure is the highest level of protein organization. It is found only in proteins that have structures involving two or more polypeptide chains that are independent of each other — that is, are not covalently bonded to each other. These multichain proteins are often called oligomeric proteins. The quaternary structure of а protein involves the associations among the separate chains in an oligomeric protein.

The function of hemoglobin in an organism is to transport oxygen. 1 g of hemoglobin absorbs 1.35 ml of oxygen at STP, corresponding to exactly one molecule of О 2 per iron.

Hemoglobin

Globular and fibrous proteins  On the basis of structural shape, proteins can be classified into two major types: fibrous proteins and globular proteins.  А fibrous protein is а protein that has а long, thin, fibrous shape. Such proteins are made up of long rod-shaped or string-like molecules that can intertwine with one another and form strong fibers. They are water-insoluble and generally have structural functions within the human body.  А globular protein is а protein whose overall shape is roughly spherical or globular. Globular proteins either dissolve in water or form stable suspensions in water, which allows them to travel through the blood and other body fluids to sites where their activity is needed.

Simple and Conjugated Proteins  Proteins are classified as either simple proteins or conjugated proteins.  А SIMPLE PROTEIN is made up entirely of amino acid residues.  А COMPOUND PROTEIN has other chemical components in addition to amino acids. These additional components, which may be organic or inorganic, are called prosthetic groups.

Thank you for attention