Scalable Video Multicast with Adaptive Modulation and Coding in Broadband Wireless Data Systems Peilong Li *, Honghai Zhang *, Baohua Zhao +, Sampath Rangarajan.

Slides:



Advertisements
Similar presentations
VSMC MIMO: A Spectral Efficient Scheme for Cooperative Relay in Cognitive Radio Networks 1.
Advertisements

Resource Allocation Software Algorithms for AMC-OFDM Systems Dr. Muayad Sadik Croock Computer Engineering Department, University of Technology 1.
LOGO Video Packet Selection and Scheduling for Multipath Streaming IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 3, APRIL 2007 Dan Jurca, Student Member,
2005/12/06OPLAB, Dept. of IM, NTU1 Optimizing the ARQ Performance in Downlink Packet Data Systems With Scheduling Haitao Zheng, Member, IEEE Harish Viswanathan,
Presented by Santhi Priya Eda Vinutha Rumale.  Introduction  Approaches  Video Streaming Traffic Model  QOS in WiMAX  Video Traffic Classification.
1 “Multiplexing Live Video Streams & Voice with Data over a High Capacity Packet Switched Wireless Network” Spyros Psychis, Polychronis Koutsakis and Michael.
Mohamed Hefeeda Multiplexing of Variable Bitrate Scalable Video for Mobile Broadcast Networks Project Presentation Farid Molazem Cmpt 820 Fall 2010 School.
1 Adaptive resource management with dynamic reallocation for layered multimedia on wireless mobile communication net work Date : 2005/06/07 Student : Jia-Hao.
A Layered Hybrid ARQ Scheme for Scalable Video Multicast over Wireless Networks Zhengye Liu, Joint work with Zhenyu Wu.
Proxy Cache Management for Fine-Grained Scalable Video Streaming Jiangchuan Liu, Xiaowen Chu, and Jianliang Xu INFOCOM 2004.
Adaptive Rate Control for Streaming Stored Fine- Grained Scalable Video Philippe de Cuetos, Keith W. Ross NOSSDAV 2002, May 12-14,2002.
1 Algorithms for Bandwidth Efficient Multicast Routing in Multi-channel Multi-radio Wireless Mesh Networks Hoang Lan Nguyen and Uyen Trang Nguyen Presenter:
Adaptive Resource Allocation for Layer-Encoded IPTV Multicasting in IEEE WiMAX Wireless Networks Wen-Hsing Kuo, Wanjiun Liao, Tehuang Liu IEEE TRANSACTIONS.
Seyed Mohamad Alavi, Chi Zhou, Yu Cheng Department of Electrical and Computer Engineering Illinois Institute of Technology, Chicago, IL, USA ICC 2009.
MAXIMIZING SPECTRUM UTILIZATION OF COGNITIVE RADIO NETWORKS USING CHANNEL ALLOCATION AND POWER CONTROL Anh Tuan Hoang and Ying-Chang Liang Vehicular Technology.
Energy-Efficient Video Multicast in 4G Wireless Systems Ya-Ju Yu 1, Pi-Cheng Hsiu 2,3, and Ai-Chun Pang 1,4 1 Graduate Institute of Networking and Multimedia,
Suk-Bok Lee, Ioannis Pefkianakis, Adam Meyerson, Shugong Xu, Songwu Lu
1 11 Subcarrier Allocation and Bit Loading Algorithms for OFDMA-Based Wireless Networks Gautam Kulkarni, Sachin Adlakha, Mani Srivastava UCLA IEEE Transactions.
Multicast Scheduling in Cellular Data Networks Katherine Guo, Arun Netravali, Krishan Sabnani Bell-Labs Research Hyungsuk Won, Han Cai, Do Young Eun, Injong.
Optimal Power Control, Rate Adaptation and Scheduling for UWB-Based Wireless Networked Control Systems Sinem Coleri Ergen (joint with Yalcin Sadi) Wireless.
College of Engineering WiFi and WCDMA Network Design Robert Akl, D.Sc. Department of Computer Science and Engineering Robert Akl, D.Sc. Department of Computer.
Performance Analysis of an innovative scheduling algorithm for OFDMA based IEEE a systems E. Baccarelli, M.Biagi, C.Pelizzoni, N.Cordeschi This work.
Liping WANG 1, Yusheng JI 1,2, and Fuqiang Liu 3 1 The Graduate University for Advanced Studies, Tokyo, Japan 2 National Institute of Informatics, Tokyo,
Performance evaluation of adaptive sub-carrier allocation scheme for OFDMA Thesis presentation16th Jan 2007 Author:Li Xiao Supervisor: Professor Riku Jäntti.
DARP: Distance-Aware Relay Placement in WiMAX Mesh Networks Weiyi Zhang *, Shi Bai *, Guoliang Xue §, Jian Tang †, Chonggang Wang ‡ * Department of Computer.
Fair Class-Based Downlink Scheduling with Revenue Considerations in Next Generation Broadband wireless Access Systems Bader Al-Manthari, Member, IEEE,
QoS Multicasting over Mobile Networks IEEE Globecom 2005 Reporter : Hsu,Ling-Chih.
MAP: Multi-Auctioneer Progressive Auction in Dynamic Spectrum Access Lin Gao, Youyun Xu, Xinbing Wang Shanghai Jiaotong University.
November 4, 2003APOC 2003 Wuhan, China 1/14 Demand Based Bandwidth Assignment MAC Protocol for Wireless LANs Presented by Ruibiao Qiu Department of Computer.
Utility-Based Resource Allocation for Layer-Encoded IPTV Multicast Service in Wireless Relay Networks Shi-Sheng Sun, Yi-Chun Chen, Wanjiun Liao Department.
Energy-Saving Scheduling in IEEE e Networks Chia-Yen Lin, and Hsi-Lu Chao Department of Computer Science National Chiao Tung University.
Device-to-Device Communication in Cellular Networks Speaker: Tsung-Han Chiang Date: Feb. 24,
Scaling Laws for Cognitive Radio Network with Heterogeneous Mobile Secondary Users Yingzhe Li, Xinbing Wang, Xiaohua Tian Department of Electronic Engineering.
Paper # – 2009 A Comparison of Heterogeneous Video Multicast schemes: Layered encoding or Stream Replication Authors: Taehyun Kim and Mostafa H.
Converge-Cast: On the Capacity and Delay Tradeoffs Xinbing Wang Luoyi Fu Xiaohua Tian Qiuyu Peng Xiaoying Gan Hui Yu Jing Liu Department of Electronic.
Downlink Scheduling With Economic Considerations to Future Wireless Networks Bader Al-Manthari, Nidal Nasser, and Hossam Hassanein IEEE Transactions on.
A Downlink Data Region Allocation Algorithm for IEEE e OFDMA
Full auto rate MAC protocol for wireless ad hoc networks Z. Li, A. Das, A.K. Gupta and S. Nandi School of Computer Engineering Nanyang Technological University.
TOPOLOGY MANAGEMENT IN COGMESH: A CLUSTER-BASED COGNITIVE RADIO MESH NETWORK Tao Chen; Honggang Zhang; Maggio, G.M.; Chlamtac, I.; Communications, 2007.
IEEE VTC 2010 Optimal Layered Video IPTV Multicast Streaming over IEEE e WiMAX Systems Po-Han Wu, Yu Hen Hu *, Jenq-Neng Hwang University of Washington.
A Joint Bandwidth Allocation and Routing Scheme for the IEEE 802
Overload Prediction Based on Delay in Wireless OFDMA Systems E. O. Lucena, F. R. M. Lima, W. C. Freitas Jr and F. R. P. Cavalcanti Federal University of.
Utility-Based Resource Allocation for Layer- Encoded IPTV Multicast in IEEE (WiMAX) Wireless Networks Wen-Hsing Kuo ( 郭文興 ),Te-huang Liu ( 劉得煌 ),
Cooperative Layered Wireless Video Multicast Ozgu Alay, Thanasis Korakis, Yao Wang, Elza Erkip, Shivendra Panwar.
Dynamic Topology Control for Multi-hop Relaying in a Cellular TDD-OFDMA System Hye J. Kang, Hyun S. Ryu, and Chung G. Kang School of Electrical Engineering,
Multiple Frequency Reuse Schemes in the Two-hop IEEE j Wireless Relay Networks with Asymmetrical Topology Weiwei Wang a, Zihua Guo b, Jun Cai c,
Variable Bandwidth Allocation Scheme for Energy Efficient Wireless Sensor Network SeongHwan Cho, Kee-Eung Kim Korea Advanced Institute of Science and Technology.
A Utility-based Mechanism for Broadcast Recipient Maximization in WiMAX Multi-level Relay Networks Cheng-Hsien Lin, Jeng-Farn Lee, Jia-Hui Wan Department.
Shibo He 、 Jiming Chen 、 Xu Li 、, Xuemin (Sherman) Shen and Youxian Sun State Key Laboratory of Industrial Control Technology, Zhejiang University, China.
Bandwidth Balancing in Multi- Channel IEEE Wireless Mesh networks Claudio Cicconetti, Ian F. Akyildiz School of Electrical and Computer Engineering.
Multicast Recipient Maximization in IEEE j WiMAX Relay Networks Wen-Hsing Kuo † ( 郭文興 ) & Jeng-Farn Lee ‡ ( 李正帆 ) † Department of Electrical Engineering,
Lin Tian ∗ ‡, Di Pang ∗,Yubo Yang ∗, Jinglin Shi ∗, Gengfa Fang †, Eryk Dutkiewicz † ∗ Institute of Computing Technology, Chinese Academy of Science, China.
LOGO A Latency and Modulation Aware Bandwidth Allocation Algorithm for WiMAX Base Stations Yi-Neng Lin, Che-Wen Wu, Ying-Dar Lin, and Yuan-Cheng Lai WCNC.
1 A Cross-Layer Scheduling Algorithm With QoS Support in Wireless Networks Qingwen Liu, Student Member, IEEE, Xin Wang, Member, IEEE, and Georgios B. Giannakis,
A Bandwidth Scheduling Algorithm Based on Minimum Interference Traffic in Mesh Mode Xu-Yajing, Li-ZhiTao, Zhong-XiuFang and Xu-HuiMin International Conference.
On Exploiting Diversity and Spatial Reuse in Relay-enabled Wireless Networks Karthikeyan Sundaresan, and Sampath Rangarajan Broadband and Mobile Networking,
CHANNEL ALLOCATION FOR SMOOTH VIDEO DELIVERY OVER COGNITIVE RADIO NETWORKS Globecom 2010, FL, USA 1 Sanying Li, Tom H. Luan, Xuemin (Sherman) Shen Department.
Video Caching in Radio Access network: Impact on Delay and Capacity
SERENA: SchEduling RoutEr Nodes Activity in wireless ad hoc and sensor networks Pascale Minet and Saoucene Mahfoudh INRIA, Rocquencourt Le Chesnay.
Telecommunication Networks Lab.DET – Department of Electronics and Telecommunications 11/04/2007COST289 4th Workshop - Gothenburg, Sweden 1 A Finite State.
Ben-Gurion University of the Negev Department of Communication Systems Engineering.
History-based Adaptive Modulation for a Downlink Multicast Channel in OFDMA systems Haibo Wang, Hans Peter Schwefel and Thomas Skjodeberg Toftegaard Center.
1 A Proportional Fair Spectrum Allocation for Wireless Heterogeneous Networks Sangwook Han, Irfanud Din, Woon Bong Young and Hoon Kim ISCE 2014.
1 A Throughput Enhancement Handover Algorithm for WiMAX Network Architecture Hao-Ming Chang and Gwo-Jong Yu Graduate School of Mathematical Sciences, Aletheia.
1 On the Trade-Off between Energy and Multicast Efficiency in e-Like Mobile Networks Reuven Cohen, Liran Katzir, and Romeo Rizzi Department of Computer.
OPTIMAL LINEAR-TIME QOS- BASED SCHEDULING FOR WIMAX Arezou Mohammadi, Selim G. Akl, Firouz Behnamfar School of Computing, Queen’s University CCECE 2008.
Near-Optimal Spectrum Allocation for Cognitive Radios: A Frequency-Time Auction Perspective Xinyu Wang Department of Electronic Engineering Shanghai.
Cross-Layer Optimization for State Update in Mobile Gaming
Video Streaming over Cognitive radio networks
Presentation transcript:

Scalable Video Multicast with Adaptive Modulation and Coding in Broadband Wireless Data Systems Peilong Li *, Honghai Zhang *, Baohua Zhao +, Sampath Rangarajan + * Dept. Computer Science and Technology, University of Science and Technology of China + NEC Laboratories America, USA IEEE/ACM Transactions on Networking, vol. 20, no. 1, Feb. 2012, pp. 57–68.

Outline Introduction (Problem/Related Work/Goals) Network Environment and Problem formulation Utility optimization –Single Session MCS Assignment –Multisession Resource Allocation Simulations Conclusion

Introduction Future mobile broadband wireless networks (4G) –LTE-Advanced, WiMAX peak data rate of 100 Mb/s for high-mobility users peak data rate of 1 Gb/s for low-mobility users –Such a high bandwidth makes it a reality to provide real-time video services IPTV services, live video streaming, and online telecast of sports

Introduction Wireless spectrum is shared by many users and many video sessions –each video session may have very large bandwidth and stringent delay requirement Wireless multicast –an efficient mechanism to support such services because of the shared nature of the wireless medium

Introduction High-speed multicast services –Based on audiovisual coding spec. – SVC, the raw video session can be converted into different layer with different data rates. Base Layer Enhancement Layer 1 Base Layer Enhancement Layers 1 Base Layer Enhancement Layers 2

Introduction High-speed multicast services –Based on audiovisual coding spec. – SVC, the raw video session can be converted into different layer with different data rates. Layer 1 Layer 2 Layer 3 Layer 4 Layer 1 Layer 2 Layer 3 Layer 4 MS j video session 1

Introduction Modulation and Coding Scheme (MCS) m2m2 m3m3 m4m4 m5m5 m6m6 m1m

Introduction Full Session Coverage (FSC) –All users in each video session group (belonging to FSC) must receive a minimum data rate (base layer). video session 1 video session 2 video session 3 FSC support: video sessions {1, 3} FSC

Problem How to allocate the radio resource to multiple multicast video sessions for maximizing system utility? –MCS scheme for each video layer of video session

Related Work [5] S. Deb, S. Jaiswal, and K. Nagaraj, “Real-time video multicast in WiMAX networks,” IEEE INFOCOM, This paper proposed a fast greedy algorithm for both single- session and multisession multicast services for maximizing the system utility.

Related Work [5] S. Deb, S. Jaiswal, and K. Nagaraj, “Real-time video multicast in WiMAX networks,” IEEE INFOCOM, However, it is very difficult to enforce the assumption –enforces full session coverage (FSC) on all video sessions –all enhancement layers have the same size

Goal Develop the resource allocation algorithm for multiple multicast video sessions with FCS support or without FCS support. –MCS scheme for each video layer of video session –The enhancement layers of video sessions have different sizes. Maximize the system utility

Network Environment This paper assumes that –T slots are available in a frame for multicast video transmission. –All sub-channels and slots have the same channel condition for a given user. Preamble FCH DL-MAP Sub-channel Logical Number OFDMA symbols

Network Environment

This paper assumes that –S: the number of multicast sessions (s = 1, …, S) –J [s] : the number of users in session s (j = 1, …, J) –The possible MCSs are m = 1, …, M (m=1, QPSK ½) –M j : the maximum MCS that can be received by user j –R m : the data rate provided by a single slot with MCS m (R m <R m+1 ) –L [s] : the number of layers in session s – [s] : the data rate of layer l of video session s –  [s] : the slots to transmit the layer l of video session s with MCS m –  [s] : indicator function, 1, means layer l of session s is modulated MCS m 0, otherwise

Problem Formulation [s] : the data rate of layer l of video session s  [s] : the received rate for user j Layer 1 Layer 2 Layer 3 Layer 4 MS j

Problem Formulation C : the set of the video sessions requiring FSC, C  {1, 2, …, S} N [s] : the set of users in video session s Base layer (l=1)

Problem Formulation : an arbitrary non-decreasing, nonnegative utility function of rate Objective:

Problem Formulation A video layer can be modulated with at most one MCS. Total transmission slots for all video sessions cannot exceed the available slots T.

Utility optimization Single-Session MCS Assignment (for each session s) Multisession Resource Allocation

Single-Session MCS Assignment N m : the set of user that can receive MCS m 4 users 7 users MCS 3 MCS 2 12 users MCS N 3 = users {1, 2, 3, 4} N 2 = users {1, 2, 3, 4, 5, 6, 7} N 1 = users {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Single-Session MCS Assignment data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps Layer 3 3 =3 kbps Layer 2 2 =2 kbps Layer 1 1 =1 kbps 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) T=6 (slots)

Single-Session MCS Assignment  j,l : the utility for user j when L j = l. data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps  j,4 = 10 Layer 3 3 =3 kbps  j,3 = 6 Layer 2 2 =2 kbps  j,2 = 3 Layer 1 1 =1 kbps  j,1 = 1 T=6 (slots)

Single-Session MCS Assignment data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps  j,4 = 10  4,1 = 4 slots  j,4 = 10  4,2 = 2 slots  j,4 = 10  4,3 = 1 slot Layer 3 3 =3 kbps  j,3 = 6  3,1 = 3 slots  j,3 = 6  3,2 = 1.5 slots  j,3 = 6  3,3 = 0.75 slot Layer 2 2 =2 kbps  j,2 = 3  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps  j,1 = 1  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) T=6 (slots)

Single-Session MCS Assignment u(l, m, t): the maximal utility when considering all layers and users who can receive the MCS m –Layer l is modulated with MCS m –There are remaining resource t for all layers l’>l

Single-Session MCS Assignment u(l, m, t): the maximal utility when considering all layers and users who can receive the MCS m

Single-Session MCS Assignment Lemma 1: if the jth layer of multicast session is modulated with MCS m, the (j+1)th layer is either not transmitted or is modulated with MCS m’  m. (for higher utility) Proof of Lemma 1 (contradiction) –Assume that the jth layer is modulated with MCS m’ the (j+1)th layer is modulated with MCS m Layer j Layer j+1 MCS m MCS m’

Single-Session MCS Assignment Layer j Layer j+1 MCS m MCS m’ x users y users MCS m’ MCS m m’  m Proof of Lemma 1

Single-Session MCS Assignment Layer j Layer j+1 MCS m MCS m’ x users y users Layer j+1 Layer j m’  m Proof of Lemma 1 x users y users MCS m’ MCS m x  ( j + j+1 )

Single-Session MCS Assignment Layer j Layer j+1 MCS m’ MCS m x users y users Layer j+1 Layer j x  ( j + j+1 ) Layer j x  ( j + j+1 ) + y  ( j ) m’  m Proof of Lemma 1 x users y users MCS m’ MCS m

Single-Session MCS Assignment Lemma 1: if the jth layer of multicast session is modulated with MCS m, the (j+1)th layer is either not transmitted or is modulated with MCS m’  m. (for higher utility) Lemma 1 is proved by contradiction !

Single-Session MCS Assignment Lemma 2: The value of u(l, m, t) depends only on the MCS assignment of the video layers higher than or equal to l MCS: m l th layer base layer L th layer Proof of Lemma 2 –MCS levels should be assigned in an ascending order from the base layer to the highest enhancement layer –In the scenario of u(l, m, t), Layers below l must be modulated with MCS 1 to m –Any user in N m can receive at least layers 1 to l –i.e.,  j  N m, L j  l

Single-Session MCS Assignment Lemma 2: The value of u(l, m, t) depends only on the MCS assignment of the video layers higher than or equal to l Proof of Lemma 2 –  j  N m, L j  l

Single-Session MCS Assignment data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps  j,4 = 10  4,1 = 4 slots  j,4 = 10  4,2 = 2 slots  j,4 = 10  4,3 = 1 slot Layer 3 3 =3 kbps  j,3 = 6  3,1 = 3 slots  j,3 = 6  3,2 = 1.5 slots  j,3 = 6  3,3 = 0.75 slot Layer 2 2 =2 kbps  j,2 = 3  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps  j,1 = 1  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) T=6 (slots)

Single-Session MCS Assignment data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps 12*10=120  4,1 = 4 slots 7*10=70  4,2 = 2 slots 4*10=40  4,3 = 1 slot Layer 3 3 =3 kbps  j,3 = 6  3,1 = 3 slots  j,3 = 6  3,2 = 1.5 slots  j,3 = 6  3,3 = 0.75 slot Layer 2 2 =2 kbps  j,2 = 3  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps  j,1 = 1  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) T=6 (slots)  j,4 = 10

data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps 12*10=120  4,1 = 4 slots 7*10=70  4,2 = 2 slots 4*10=40  4,3 = 1 slot Layer 3 3 =3 kbps  j,3 = 6  3,1 = 3 slots  j,3 = 6  3,2 = 1.5 slots 40+0*6=40  3,3 = 0.75 slot Layer 2 2 =2 kbps  j,2 = 3  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps  j,1 = 1  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) T=6 (slots)  j,4 = 10  j,3 = 6

data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps 12*10=120  4,1 = 4 slots 7*10=70  4,2 = 2 slots 4*10=40  4,3 = 1 slot Layer 3 3 =3 kbps  j,3 = 6  3,1 = 3 slots 40+3*6=58  3,2 = 1.5 slots 40+0*6=40  3,3 = 0.75 slot Layer 2 2 =2 kbps  j,2 = 3  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps  j,1 = 1  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) T=6 (slots)  j,4 = 10  j,3 = 6

data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps 12*10=120  4,1 = 4 slots 7*10=70  4,2 = 2 slots 4*10=40  4,3 = 1 slot Layer 3 3 =3 kbps 40+8*6=86  3,1 = 3 slots 40+3*6=58  3,2 = 1.5 slots 40+0*6=40  3,3 = 0.75 slot Layer 2 2 =2 kbps  j,2 = 3  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps  j,1 = 1  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) T=6 (slots)  j,4 = 10  j,3 = 6

data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps 12*10=120  4,1 = 4 slots 7*10=70  4,2 = 2 slots 4*10=40  4,3 = 1 slot Layer 3 3 =3 kbps 40+8*6=86  3,1 = 3 slots 40+3*6=58  3,2 = 1.5 slots 40+0*6=40  3,3 = 0.75 slot Layer 2 2 =2 kbps  j,2 = 3  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps  j,1 = 1  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) T=6 (slots)  j,4 = 10  j,3 = 6

data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps 12*10=120  4,1 = 4 slots 7*10=70  4,2 = 2 slots 4*10=40  4,3 = 1 slot Layer 3 3 =3 kbps 40+8*6=86  3,1 = 3 slots 40+3*6=58  3,2 = 1.5 slots 40+0*6=40  3,3 = 0.75 slot Layer 2 2 =2 kbps 86+0*3=86  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps  j,1 = 1  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) T=6 (slots)  j,4 = 10  j,3 = 6  j,2 = 3

data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps 12*10=120  4,1 = 4 slots 7*10=70  4,2 = 2 slots 4*10=40  4,3 = 1 slot Layer 3 3 =3 kbps 40+8*6=86  3,1 = 3 slots 40+3*6=58  3,2 = 1.5 slots 40+0*6=40  3,3 = 0.75 slot Layer 2 2 =2 kbps 86+0*3=86  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps 0  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) T=6 (slots)  j,4 = 10  j,3 = 6  j,2 = 3  j,1 = 1 u(l, m, t)=0, when t<0

data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps 12*10=120  4,1 = 4 slots 7*10=70  4,2 = 2 slots 4*10=40  4,3 = 1 slot Layer 3 3 =3 kbps  j,3 = 6  3,1 = 3 slots 70+0*6=70  3,2 = 1.5 slots  j,3 = 6  3,3 = 0.75 slot Layer 2 2 =2 kbps 70+5*3=85  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps 85+0*1=85  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) T=6 (slots)  j,4 = 10  j,3 = 6  j,2 = 3  j,1 = 1

Single-Session MCS Assignment  : indicator function, 1, means layer l is modulated MCS m 0, otherwise

Utility optimization Single-Session MCS Assignment Multisession Resource Allocation

Multiple video sessions

Multisession Resource Allocation The maximum utility of session s with t available slots.

Multisession Resource Allocation Objective of multisession resource allocation where minimum required slots of session s

Multisession Resource Allocation v(s, t): the maximum utility of video session 1 to s Compute v(1, t) for all possible t

Multisession Resource Allocation Compute the v(s, t) to v(S, T)

Simulation Setup 1 base station 200 mobile users (uniform distribution)

Simulation Setup

Simulation Greedy [5]: –all video sessions transmitted with support of FSC –requires equal size for all enhancement layers Naive: –divides the resource (slots) equally among video sessions –only uses the highest MCS which can be received by all users for whole video session

Simulation Layers: 2~10

Simulation Layers: 2~10

Simulation

Layers: 2~10 Simulation

Conclusion This paper studies the resource allocation problem for SVC- encoded video multicast in wireless networks. –Maximize the total system utility –Support of variable layer size –Support configurable full session coverage (FSC) TheEND Thanks for your attention !