First Results from the UCNA Experiment B. PlasterLANL 2008 Brad Plaster, University of Kentucky LANL P-25 — November 5, 2008 Leah Broussard (Duke/TUNL)

Slides:



Advertisements
Similar presentations
NDVCS measurement with BoNuS RTPC M. Osipenko December 2, 2009, CLAS12 Central Detector Collaboration meeting.
Advertisements

Stefan Roesler SC-RP/CERN on behalf of the CERN-SLAC RP Collaboration
Advanced GAmma Tracking Array
IKON7, Instrument clip session, September 2014, ESS Headquarters and Medicon Village, Lund, Sweden A cold neutron beamline for Particle
Hartmut Abele Knoxville, 8 June 2006 Neutron Decay Correlation Experiments.
High precision study of the  decay of 42 Ti  V ud matrix element and nuclear physics  Experimental and theoretical precisions  New cases: goals and.
A Muon Veto for the Ultra-Cold Neutron Asymmetry Experiment Vince Bagnulo LANL Symposium 2006 Outline ● UCNA Experiment ● Muon background ● Proposed Veto.
A Muon Veto for the Ultra Cold Neutron Asymmetry Experiment Vince Bagnulo with Dr. Jeff Martin Electrons Ultra Cold Neutrons Cosmic Ray Muons Protons Pions.
The Beta-Asymmetry in Neutron Decay Jeffery W. Martin W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA for the.
Electron Backscattering Jeff Martin University of Winnipeg Outline: Motivation Experimental Setup Results and Comparisons See also: nucl-ex/ Phys.
UCN beta decay Dan Melconian University of Washington.
Progress on the final TWIST measurement of James Bueno, University of British Columbia and TRIUMF on behalf of the Triumf Weak Interaction Symmetry Test.
A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis:
Accurate  Spectroscopy for Ultracold Neutrons Jeff Martin University of Winnipeg See also: J.W. Martin et al, Phys. Rev. C (2006) J.W. Martin.
The Tagger Microscope Richard Jones, University of Connecticut Hall D Tagger - Photon Beamline ReviewJan , 2005, Newport News presented by GlueX.
GLAST LAT Project Test Beam Meeting, June 6, 2006 S. Funk 1/6 PS Positron Simulations Stefan Funk June 6, 2006.
10/24/2005Zelimir Djurcic-PANIC05-Santa Fe Zelimir Djurcic Physics Department Columbia University Backgrounds in Backgrounds in neutrino appearance signal.
Characterization of CF 4 primary scintillation Andrey Morozov.
The Neutron Beta-Decay Exploring the properties of fundamental interactions Hartmut Abele Bar Harbor A,B,C,D,…  The Neutron Alphabet.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Report of the NTPC Test Experiment in 2007Sep and Others Yohei Nakatsugawa.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Measurements of F 2 and R=σ L /σ T on Deuteron and Nuclei in the Nucleon Resonance Region Ya Li January 31, 2009 Jlab E02-109/E (Jan05)
KamLAND Experiment Kamioka Liquid scintillator Anti-Neutrino Detector - Largest low-energy anti-neutrino detector built so far - Located at the site of.
Status of the Beamline Simulation A.Somov Jefferson Lab Collaboration Meeting, May 11, 2010.
TAUP2007, Sendai, 12/09/2007 Vitaly Kudryavtsev 1 Limits on WIMP nuclear recoils from ZEPLIN-II data Vitaly A. Kudryavtsev Department of Physics and Astronomy.
25/07/2002G.Unal, ICHEP02 Amsterdam1 Final measurement of  ’/  by NA48 Direct CP violation in neutral kaon decays History of the  ’/  measurement by.
Irakli Chakaberia Final Examination April 28, 2014.
Results from Step I of MICE D Adey 2013 International Workshop on Neutrino Factories, Super-beams and Beta- beams Working Group 3 – Accelerator Topics.
Background from the NIST test The pencil neutron beam (1 mm 2 ) with intensity about 7000 n/sec The beam was completely absorbed in the beam stop with.
Normalization of the NPDGamma Experimental Data F. Simmons, C. Crawford University of Kentucky, for the NPDGamma collaboration Background: NPDγ Experiment.
V.L. Kashevarov. Crystal Collaboration Meeting, Mainz, September 2008 Photoproduction of    on protons ► Introduction ► Data analysis.
MiniBooNE Michel Sorel (Valencia U.) for the MiniBooNE Collaboration TAUP Conference September 2005 Zaragoza (Spain)
Gavril Giurgiu, Carnegie Mellon, FCP Nashville B s Mixing at CDF Frontiers in Contemporary Physics Nashville, May Gavril Giurgiu – for CDF.
Walid DRIDI, CEA/Saclay n_TOF Collaboration Meeting, Paris December 4-5, 2006 DAPNIA Neutron capture cross section of 234 U Walid DRIDI CEA/Saclay for.
Hyper-Kamiokande project and R&D status Hyper-K project Motivation Detector Physics potential study photo-sensor development Summary Kamioka.
Precision measurement of the neutron β-asymmetry A with spin-polarized ultracold neutrons B.W. Filippone, K.P. Hickerson, T.M. Ito, J. Liu, J.W. Martin,
UCN magnetic storage and neutron lifetime V.F.Ezhov Petersburg Nuclear Physics Institute, Gatchina, Russia. (ITEP )
22 September 2005 Haw05 1  (1405) photoproduction at SPring-8/LEPS H. Fujimura, Kyoto University Kyoto University, Japan K. Imai, M. Niiyama Research.
E02-017: Lifetime of Heavy Hypernuclei Introduction and Status Xiyu Qiu Lanzhou University Hall C meeting Jan 13, 2012.
The aSPECT collaboration: Institut für Physik, Universität Mainz, Germany: F. Ayala Guardia, M. Borg, F. Glück, W. Heil, G. Konrad, N. Luquero Llopis,
Review of τ -mass measurements at e + e - - colliders Yury Tikhonov (Budker INP) Contents  Introduction  Current status of τ-mass measurements and μτ.
Muon detection in NA60  Experiment setup and operation principle  Coping with background R.Shahoyan, IST (Lisbon)
Particle Physics with Slow Neutrons ILNGS Summer Institute, September 2005Torsten Soldner Particle Physics with Slow Neutrons I: Neutrons in the Standard.
Progress in the construction of the MICE cooling channel and first measurements Adam Dobbs, EPS-HEP, 23 rd July 2011.
The Q Weak Experiment Event tracking, luminosity monitors, and backgrounds John Leacock Virginia Tech on behalf of the Q Weak collaboration Hall C Users.
Davide Franco – NOW C measurement and the CNO and pep fluxes in Borexino Davide Franco NOW2004 Conca Specchiulla September 2004.
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
Statistical and systematic uncertainties in a and A J. David Bowman SNS FPNB Magnet Meeting North Carolina State University Jan. 8, 2006.
Medium baseline neutrino oscillation searches Andrew Bazarko, Princeton University Les Houches, 20 June 2001 LSND: MeVdecay at rest MeVdecay in flight.
Contents Introduction (motivation of precise measurements of neutron lifetime, history of experimental accuracy improvement). a. Result of neutron lifetime.
1 Absolute Hadronic D 0 and D + Branching Fractions at CLEO-c Werner Sun, Cornell University for the CLEO-c Collaboration Particles and Nuclei International.
Mike HildrethEPS/Aachen, July B Physics Results from DØ Mike Hildreth Université de Notre Dame du Lac DØ Collaboration for the DØ Collaboration.
T2K Status Report. The Accelerator Complex a Beamline Performance 3 First T2K run completed January to June x protons accumulated.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
Run Time, Mott-Schwinger, Systematics, Run plan David Bowman NPDGamma Collaboration Meeting 10/15/2010.
Thomas Roser Snowmass 2001 June 30 - July 21, 2001 Proton Polarimetry Proton polarimeter reactions RHIC polarimeters.
A New Upper Limit for the Tau-Neutrino Magnetic Moment Reinhard Schwienhorst      ee ee
The Science Program at the Los Alamos Ultra-cold Neutron Source Alexander Saunders Los Alamos National Lab 3 rd PSI Workshop Sep LA-UR
GSI 9Feb09 NMI3 – Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy, Joint Research Activity (JRA8): MUON-S. Contract:
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
Observation Gamma rays from neutral current quasi-elastic in the T2K experiment Huang Kunxian for half of T2K collaboration Mar. 24, Univ.
Precision Measurement of G E p /G M p with BLAST Chris Crawford MIT Laboratory for Nuclear Science Thesis Committee Review Meeting 2003/12/4.
Double Chooz Experiment Status Jelena Maricic, Drexel University (for the Double Chooz Collaboration) September, 27 th, SNAC11.
A Measurement of the Ultra-High Energy Cosmic Ray Spectrum with the HiRes FADC Detector (HiRes-2) Andreas Zech (for the HiRes Collaboration) Rutgers University.
IBD Detection Efficiencies and Uncertainties
Neutronics Studies for the Nab Experiment
Neutrino Magnetic Moment : Overview
Presentation transcript:

First Results from the UCNA Experiment B. PlasterLANL 2008 Brad Plaster, University of Kentucky LANL P-25 — November 5, 2008 Leah Broussard (Duke/TUNL) Kevin Hickerson (Caltech) Adam Holley (NCSU) Russ Mammei (Virginia Tech) Michael Mendenhall (Caltech) Robert Pattie (NCSU) Raymond Rios (Idaho/LANL) Anne Sallaska (U Washington) Riccardo Schmid (Caltech) Sky Sjue (U Washington) Junhua Yuan (Caltech) Yanping Xu (NCSU) Several New Collaborators as of 2008 Run

This talk B. PlasterLANL 2008 Not talk about Detailed design/performance of the Area B UCN source Mark Makela, Chris Morris, Andy Saunders Will talk about Physics motivation for UCNA Analysis techniques/results from 2007 run Status report on 2008 run Review of UCNA experiment

Neutron β-decay B. PlasterLANL 2008 σ ne θeθe p e θpθp g V = f 1 (q 2  0 ) G F |V ud |weak magnetism g A = g 1 (q 2  0 ) G F |V ud | = gAgA gVgV e iφe iφ O (5%) lattice QCD = 1 (CVC)

Correlation coefficients B. PlasterLANL 2008 σ ne θeθe p e θpθp spin e− correlation −0.103(4) electron, β- asymmetry −0.1173(13) neutrino- asymmetry 0.983(4) a 0 = 1 – A 0 = − B 0 = Highest Sensitivity to

Neutron lifetime B. PlasterLANL 2008 nn 1  G F 2 |V ud | 2 ( ) (1 + RC) “Master Formula” Marciano and Sirlin (2006) ± (0.0008) δ(V ud ) = ±

Status of A and B. PlasterLANL 2008 PERKEO II ILL-TPC IAE-PNPI PERKEO I ΔA/A [ % ] PDG Mean1.1 Published PDG 2008 Average of 4 published A results + 1 simultaneous A/B result [ Mostovoi et al. (2001) ] = − ± [0.23%] PERKEO II update: H. Abele, Prog. Part. Nucl. Phys. 60, 1 (2008) 0.28%

Status of  n and neutron V ud B. PlasterLANL 2008 Serebrov et al. (2005) Still no new (published) results since PDG 2008 neutron V ud = (4) τ (18) (2) RC V ud

Status of V ud B. PlasterLANL 2008 Improvement in neutron sector V ud ? Resolve discrepancies in A  If achieve agreement,, factor of 2 improvement Plus improvement in bottom-line precision on A: 0.6%  ?? But must resolve  n discrepancy !! 0 +  0 + neutron PDG nuclear mirror transitions 19 Ne, 21 Na, 35 Ar pion Naviliat-Cuncic and Severijns, arXiv:

Why measurement of A via UCN ? B. PlasterLANL 2008 PERKEO I (1986) Systematic Corrections [ % ] ILL (1997) PNPI (1997) PERKEO II (2002) Polarization / Spin-Flip 2.6 Backgrounds ~ 32.9 Other ~13 ~15 magnetic mirroring  cos θ  ~ 3 small ~3  cos θ 

Why measurement of A via UCN ? B. PlasterLANL 2008 Advantages of UCNA experiment (A via UCN) 1) Polarization Expect to achieve ~100% polarizations via transport of UCN through 7-Tesla magnetic fields Spin-state selected via μ B interaction, ± 60 neV/Tesla T < 335 nano-eV, v < 8 m/s, stored in material bottles

Why measurement of A via UCN ? B. PlasterLANL 2008 Advantages of UCNA experiment (A via UCN) 2) Beam-related backgrounds Greatly reduced by operating “pulsed mode” spallation source coupled to superthermal UCN source T < 335 nano-eV, v < 8 m/s, stored in material bottles prompt backgrounds environmental

Why measurement of A via UCN ? B. PlasterLANL 2008 Advantages of UCNA experiment (A via UCN) 3) New approach to electron detection T < 335 nano-eV, v < 8 m/s, stored in material bottles Low-threshold MWPC for detection of low-energy-deposition Coulomb backscattering events MWPC + plastic scintillator Low sensitivity to gammas (primary bkg’d in cold neutron expt’s) MWPCscintMWPC scint β-decay electron

Why measurement of A via UCN ? B. PlasterLANL 2008 Advantages of UCNA experiment (A via UCN) 4) Reduced neutron-generated backgrounds T < 335 nano-eV, v < 8 m/s, stored in material bottles Long storage times for UCN in apparatus For given rate, need relatively smaller number of stored UCN as compared to cold neutron beam

UCNA experiment B. PlasterLANL 2008 W(θ)  1 + vβvβ c P n A cos θ 0.6-T field expansion Angular Distribution

UCNA experiment B. PlasterLANL 2008 photograph 12/ Tesla Polarizers UCN 1-Tesla Electron Spectrometer UCN Beamline muon vetoes spin flipper

UCN spin polarization B. PlasterLANL Tesla Polarizer/Spin-Flipper Field Profile Spin-flipping via Adiabatic Fast Passage [AFP] 420 neV μB barrier UCN flux 1-Tesla AFP spin-flip region Resonator with nominal frequency of ~29 MHz Spin-flipping cancels systematic errors

Spin-flip efficiency B. PlasterLANL 2008 UCN flux g UCN detector AFP resonator + Cu foil

Spin-flip efficiency B. PlasterLANL 2008 Transmission measured to be 0.40 ± 0.05 % Spin-Flip Efficiency > 99.6%

In-situ depolarized fraction B. PlasterLANL T electron spectrometer B UCN from SD2 source 7-T Polarizer AFP off UCN detector β-decay running drain “right spin” on look for “wrong spin”

In-situ depolarized fraction B. PlasterLANL 2008 Spin Flipper State Change  t for switcher leakage signal Upper Limit of 0.65% on Depolarized Fraction Present During Any Run Quote 1.3% Systematic

Electron detection B. PlasterLANL 2008 Baseline requirements Low-sensitivity to backgrounds Minimal electron backscattering Reasonable energy resolution 2007 Geometry e 25-μm entrance and exit windows 3.5-mm plastic scintillator: energy, trigger low-pressure MWPC with low-Z fill gas 2.5-μm mylar foil Cu decay trap

Electron spectrometer B. PlasterLANL m long superconducting solenoid 1.0-Tesla field 0.6-Tesla field-expansion region 3-m long Cu decay trap [ BP et al., NIMA 595, 587 (2008) ]

Electron detection B. PlasterLANL 2008 PMT MWPC 100-Torr neopentane 2.54-mm wire spacing on anode and 2 cathode planes (163 х 163) mm 2 active area Scintillator PMTs in 100-Torr N 2 Axial fields ~300 Gauss (x,y) reconstruction [ T.M. Ito et al., NIMA 571, 676 (2007) ] Fiducial volume definition

Spectrometer performance B. PlasterLANL 2008 suppression of gamma background [ PERKEO II dominant background ] 113 Sn 368 keV MWPC: gamma suppression 2007 calibrations: 113 Sn (368 keV), 207 Bi (503 keV, 995 keV) ~310 p.e. / MeV, 5.6% at 1 MeV [ ~ 100 p.e./MeV in PERKEO II ]

Spectrometer performance B. PlasterLANL 2008 fiducial volume radius cut [decay trap walls] reconstruction of the center of Larmor spiral 113 Sn 368 keV

Event reconstruction B. PlasterLANL 2008 MWPC scintillator Correct Type I Type III Type IIMISID Type IVMISID scintillator decay trap foil + scattering off of decay trap foils + “lost events”

Monte Carlo: GEANT4 / PENELOPE B. PlasterLANL ) Reconstruct β-decay energy on event-by-event basis from measured “visible energy” deposition in scintillators “Invisible energy” loss in decay trap foils, MWPC windows/interior, and scintillator dead layer 2) Form experimental asymmetry, A exp (E recon ) = P  β cos θ  A residuals small, ~5 keV E vis (E true )  E recon (E vis )

Monte Carlo: GEANT4 / PENELOPE B. PlasterLANL ) Correct experimental asymmetry for subtle effects β cos θ “acceptance” Unobservable backscattering  β cos θ  for all triggering events energy loss tail in steep part of β-decay spectrum A exp (E recon )  β cos θ  Global Backscattering

Systematic corrections B. PlasterLANL 2008 analysis window  β cos θ  Backscattering 2007 Correction −1.6% +1.1%

Uncertainties in corrections B. PlasterLANL 2008 Uncertainty in correction for  β cos θ  acceptance ? How well is dE/dx energy loss modeled ? Assign (conservative) 25% uncertainty for geometry considerations

Uncertainties in corrections B. PlasterLANL 2008 Uncertainty in backscattering correction ? GEANT4 PENELOPE Simulations tend to under- predict backscattering Assign 30% uncertainty to correction

β-decay energy spectra B. PlasterLANL 2008 UCNA 2007 S/N 21:1 PERKEO II S/N 7: (6.6) (6.2)

Asymmetry extraction B. PlasterLANL 2008 Recoil-order corrections were applied to asymmetries (weak magnetism, g A g V interference, nucleon recoil) Standard calculational procedure of Wilkinson (1982) Included Fermi Function

UCNA 2007 result B. PlasterLANL 2008 UCNA 2007 A = − ± ±

UCNA 2008 running B. PlasterLANL Run 25-μm MWPC windows, 2.5-μm decay trap foils 0.781M β-decay events 0.396M passed cuts (tight fiducial cut), 4.1% statistical error Need ~8.5-10M events for 1% result (depending on fiducial cut) 2008 Run : Statistics + Systematics < 1% Run I: 25-μm MWPC windows, 0.7-μm decay trap foils Completed July–September, ~10.5M collected Run II: 25-μm MWPC windows, 13-μm decay trap foils Completed Monday 6AM, ~10.0M collected Run III: 6-μm MWPC windows, 0.7-μm decay trap foils Starts this weekend, thru end-of-run “Calibrate” MCs Optimal Geometry

Reduction in 2008 systematics B. PlasterLANL 2008 Decay Trap Foils 0.7 μm 13 μm  β cos θ  1.5% 3.4% Backscattering −0.5% −2.7% 25 μm MWPC Windows6 μm MWPC Windows Factor ~2 Bias to Asymmetry

UCNA 2008 running B. PlasterLANL 2008 Run I Run II

Projected impact of 2008/09 results B. PlasterLANL 2008

Summary B. PlasterLANL 2008 UCNA experiment has reported first-ever measurement of any neutron β-decay correlation parameter with UCN 2008 data collection proceeding well Poised to produce very interesting and competitive result at 1% level 4.5% “proof-of-principle” result Sub-1% level in 2009 running Higher rate: improved Fermi potential, beam current, SD2

Backgrounds vs. Spin State AFP off AFP on 0 – 800 keV background rates (all event types) EastWest ± ± ± ± no evident correlation (AFP-induced noise)

Decay Trap (x,y) Spectra 40 mm cut

Background Muons

GMS Gain Corrections LED box optical fibers β-scintillator light guides to β-PMTs NaI GMS reference PMT 60 Co gain correction factor for i th β-PMT position of LED peak in GMS reference PMT position of 60 Co peak(s) in GMS reference PMT position of LED peak in i th β-PMT

GMS Gain Corrections MeV MeV East 60 Co West 60 Co