Interactions with Rest Gas – Typical Case Interactions with Rest Gas – ELENA Quantitative analysis for ELENA Evaluations at 100 keV Ejection Energy Evaluations.

Slides:



Advertisements
Similar presentations
Interaction of Particles with Matter
Advertisements

Early Quantum Theory and Models of the Atom
Beam-Beam Effects for FCC-ee at Different Energies: at Different Energies: Crab Waist vs. Head-on Dmitry Shatilov BINP, Novosibirsk FCC-ee/TLEP physics.
Modified Moliere’s Screening Parameter and its Impact on Calculation of Radiation Damage 5th High Power Targetry Workshop Fermilab May 21, 2014 Sergei.
Physics of Fusion Lecture 1: The basics Lecturer: A.G. Peeters.
Synchrotron Radiation What is it ? Rate of energy loss Longitudinal damping Transverse damping Quantum fluctuations Wigglers Rende Steerenberg (BE/OP)
Halo calculations in ATF DR Dou Wang (IHEP), Philip Bambade (LAL), Kaoru Yokoya (KEK), Theo Demma (LAL), Jie Gao (IHEP) FJPPL-FKPPL Workshop on ATF2 Accelerator.
Degree of polarization of  produced in quasielastic charge current neutrino-nucleus scattering Krzysztof M. Graczyk Jaroslaw Nowak Institute of Theoretical.
1 Fusion enhancement due to energy spread of colliding nuclei* 1. Motivation: anomalous electron screening or what else ? 2. Energy spread  fusion enhancement.
Frictional Cooling MC Collaboration Meeting June 11-12/2003 Raphael Galea.
P460 - Quan. Stats. III1 Nuclei Protons and neutrons in nuclei separately fill their energy levels: 1s, 1p, 1d, 2s, 2p, 2d, 3s…………… (we’ll see in 461 their.
Rutherford Backscattering Spectrometry
Interactions with Matter
Particle Interactions
Beam Dynamics Tutorial, L. Rivkin, EPFL & PSI, Prague, September 2014 Synchrotron radiation in LHC: spectrum and dynamics The Large Hadron Collider (LHC)
Physics of fusion power Lecture 2: Lawson criterion / some plasma physics.
Quantum Physics and Nuclear Physics
6. Atomic and Nuclear Physics Chapter 6.6 Nuclear Physics.
Linac4 Beam Commissioning Committee PSB Beam Optics and Painting Schemes 9 th December 2010 Beam Optics and Painting Schemes C. Bracco, C. Carli, B. Goddard,
Radiation therapy is based on the exposure of malign tumor cells to significant but well localized doses of radiation to destroy the tumor cells. The.
Stopping Power The linear stopping power S for charged particles in a given absorber is simply defined as the differential energy loss for that particle.
Nuclear Reactions Rutherford’s Alpha Scattering Experiment.
Chapter 5 Diffusion and resistivity
Radiation Protection III NUCP 2331
Laslett self-field tune spread calculation with momentum dependence (Application to the PSB at 160 MeV) M. Martini.
Cross section for potential scattering
Lecture 1.3: Interaction of Radiation with Matter
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
Physics Modern Lab1 Electromagnetic interactions Energy loss due to collisions –An important fact: electron mass = 511 keV /c2, proton mass = 940.
abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1 ]  70% transmission SIS – FRS  ε trans transmission.
Initial Measurements of O-ion and He-ion Decay Rates Observed from the Van Allen Probes RBSPICE Instrument Andrew Gerrard, Louis Lanzerotti et al. Center.
E. Steffens - PSTP 2007 (BNL)Summary ABS for Targets and Ion Sources1 Summary on „ABS‘s for Targets & Ion Sources“ Discussion Session Tuesday, ,
Beam-based vacuum observations and their consequences Sergei Nagaitsev August 18, 2003.
Alexei Fedotov, 02/02/12 1 Potentials for luminosity improvement for low-energy RHIC (with electron cooling) February 2, 2012.
EXPERIMENTAL EVIDENCE FOR HADRONIC DECONFINEMENT In p-p Collisions at 1.8 TeV * L. Gutay - 1 * Phys. Lett. B528(2002)43-48 (FNAL, E-735 Collaboration Purdue,
Calorimeters Chapter 21 Chapter 2 Interactions of Charged Particles - With Focus on Electrons and Positrons -
Aerosol Limits for Target Tracking Ronald Petzoldt ARIES IFE Meeting, Madison, WI April 22-23, 2002.
“Beam Losses” Christian Carli PSB H - Injection Review, 9 th November 2011 Several topics more or less related to beam losses, a study still somewhat at.
Monday, Sep. 20, 2010PHYS 3446, Fall 2010 Andrew Brandt 1 PHYS 3446 – Lecture #4 Monday, Sep Dr. Brandt 1.Differential Cross Section of Rutherford.
Simulation of the interaction of macro- particles with the LHC proton beam Zhao Yang, EPFL
Synchrotron Radiation
PHYS 3446 – Lecture #3 Wednesday, Sept. 3, 2008 Dr. Andrew Brandt
ATF2 background and beam halo study D. Wang(IHEP), S. Bai(IHEP), P. bambade(LAL) February 7, 2013.
Particle Detectors for Colliders Robert S. Orr University of Toronto.
Evolution of beam energy distribution as a diagnostics tool Alexey Burov, Bill Ng and Sergei Nagaitsev November 13, 2003.
GWENAEL FUBIANI L’OASIS GROUP, LBNL 6D Space charge estimates for dense electron bunches in vacuum W.P. LEEMANS, E. ESAREY, B.A. SHADWICK, J. QIANG, G.
INTENSITY LIMITATIONS (Space Charge and Impedance) M. Zobov.
Frictional Cooling A.Caldwell MPI f. Physik, Munich FNAL
Ion effects in low emittance rings Giovanni Rumolo Thanks to R. Nagaoka, A. Oeftiger In CLIC Workshop 3-8 February, 2014, CERN.
A. Dokhane, PHYS487, KSU, 2008 Chapter1- Neutron Reactions 1 NEWS Lecture1: Chapter 0 is already on my Website.
Monday, Jan. 31, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #4 Monday, Jan. 31, 2005 Dr. Jae Yu 1.Lab Frame and Center of Mass Frame 2.Relativistic.
Villars, 26 September Extra Low Energy Antiproton Ring (ELENA) for antiproton deceleration after the AD Pavel Belochitskii for the AD team On behalf.
Vacuum specifications in Linacs J-B. Jeanneret, G. Rumolo, D. Schulte in CLIC Workshop 09, 15 October 2009 Fast Ion Instability in Linacs and the simulation.
Intra-Beam scattering studies for CLIC damping rings A. Vivoli* Thanks to : M. Martini, Y. Papaphilippou *
Low Energy Antiproton Facility at CERN Christian Carli on behalf of the AD and ELENA team …. with special thanks to P.Beloshitskii, T.Eriksson and S. Maury.
“MuCyc” Update Kevin Paul Tech-X Corporation Don Summers University of Mississippi 1 NFMCC Meeting - 27 Jan 2009.
ATOMS & RADIOACTIVITY ATOMS & RADIOACTIVITY THE ATOM THE ATOM.
IBS and Touschek studies for the ion beam at the SPS F. Antoniou, H. Bartosik, Y. Papaphilippou, T. Bohl.
Slide 1 Overview Introduction Stochastic Cooling History of the Antiproton machines at CERN The AD and ELENA Conclusion.
Laboratory system and center of mass system
Simulation of Luminosity Variation
Primary estimation of CEPC beam dilution and beam halo
macroparticle model predictions
Physics of fusion power
ELENA Extra Low ENergy Antiproton Ring
LEIR Presented by M. CHANEL PSDAYS: EVIAN 2001.
LECTURE II: ELEMENTARY PROCESSES IN IONIZED GASES
PHYS 3446 – Lecture #14 Wednesday,March 7, 2012 Dr. Brandt
PHYS 3446, Spring 2012 Andrew Brandt
IR/MDI requirements for the EIC
Presentation transcript:

Interactions with Rest Gas – Typical Case Interactions with Rest Gas – ELENA Quantitative analysis for ELENA Evaluations at 100 keV Ejection Energy Evaluations at 5.3 MeV Injection Energy Conclusions Effect of the residual Gas on the circulating Antiproton Beam 5 th April 2012, ELENA Beam Physics and Performance Committee C. Carli

Interactions with Rest Gas – Typical Case Different processes (see for AD N. Madsen, S.Maury and D. Möhl, NIM A 441, p 54-59):  Nuclear interactions (red): very rare  Large angle scattering outside acceptance (orange): close encounter with nucleus leading to slow losses  Multiple small angle scattering (blue): many small deflections add up an increase emittance Rms angles estimated integrating over all impact parameters taking (few) p-bars undergoing large angle scattering angles into account as well  No interactions for p-bars passing outside atoms interactions (black) (Charge state changing processes for ions) 5th April 2012, ELENA BPPC Residual Gas Effects C.Carli Nucleus Electrons Trajectories out side atom => no deflection Vacuum chamber

Interactions with Rest Gas - ELENA Very low pressure and velocity at 100 keV  Most p-bars do not interact with rest gas molecules (black): in average ~40 s between interactions!  Nuclear interactions (red): very rare  Large angle scattering outside acceptance (orange): large cross section due to low energy (losses slow due to low pressure and velocity)  Small angle scattering (blue): several deflections of one p-bar at 100 keV very unlikely Rms angles (and blow-up) strongly overestimated if p-bars undergoing large angle scattering angles are taken into account 5th April 2012, ELENA BPPC Residual Gas Effects C.Carli Nucleus Electrons Trajectories out side atom => no deflection

Quantitative analysis for ELENA Model adapted from analogous AD study  Separation of different cases for the impact parameter Incoming particle with mass m, charge Ze and initial velocity v i =  c Interacting with residual gas molecule with mass M = A*amu and charge Ze, with A atomic mass number, amu the atomic mass unit and Z the atomic number  Radius of atom roughly r a = Z 1/3 m Deflection of beam particle depends on impact parameter b b > r a : no deflection (total cross section for interaction  sc =  r a 2 ) For deflection  not too large, i.e. b not too small (otherwise projectile lost anyhow) Electrons neglected for scattering (standard procedure for that kind of problem) 5th April 2012, ELENA BPPC Residual Gas Effects C.Carli M, Ze m, ze, v i rara b > r a no deflection Impact parameter b

Quantitative analysis for ELENA Probably a pessimistic model  In reality, atomic radius not well defined and projectiles penetrating only outer part of residual gas atom will see a smaller field  Projectile exposed to field inside atom only Projectile loss if outside ring acceptance  Assume same acceptances A T in both transverse planes and an average Twiss betafunction  T  Loss for  T (  x’ 2 +  y’ 2 ) =  T  2 > A T  Loss for impact parameter below  Loss cross section: (for different acceptances in transverse planes: ) Relevant for rms emittance blow-up (neglecting large angles leading to loss): b loss < b < r a  Standard expression for adding angular spread with given (note a factor ½ for sharing deflection between two phases and another factor ½ for the general blow-up expression 5th April 2012, ELENA BPPC Residual Gas Effects C.Carli

Evaluations at 100 keV Ejection Energy Assume N 2 with pressure Torr at room temperature  Moderately pessimistic composition (large H 2 component gives longer life-time and less blow-up)  Residual gas density n = m -3  Z = 7, A = 14  Atom radius r a = m, total cross section  sc =  r a 2 = m 2 At ejection (0.1 MeV) energy  Relativistic  and velocity:  e = and v i =  e c  Total interaction rate: 2  sc n  e c = s = 1/41 s … most p-bars are not scattered at all!! (factor 2 for 2 atoms per N 2 molecule)  Impact parameter for loss and loss cross section For  T = 3 m and A T = 50  m: b loss = m,  loss = m 2, 2 n  loss  e c = 1/622 s For  T = 2 m and A T = 70  m: b loss = m,  loss = m 2, 2 n  loss  e c = 1/1306 s  Blow-up (of transverse rms emittances) rates for the two cases above: For  T = 3 m and A T = 50  m:  bu = m 2 (  m/s), 2 n  bu  e c =  m/s For  T = 2 m and A T = 70  m:  bu = m 2 (  m/s), 2 n  bu  e c =  m/s (Taking p-bars scattered out of the acceptance (thus lost) into account would give much larger blow-up) 5th April 2012, ELENA BPPC Residual Gas Effects C.Carli

Evaluations at 5.3 MeV Injection Energy At injection (5.3 MeV) energy  Relativistic  and velocity:  i = and v i =  i c = m/s  Total interaction rate: 2  sc n  i c = s = 1/5.7 s … still few interactions!! (factor 2 for 2 atoms per N 2 molecule)  Impact parameter for loss and loss cross section For  T = 3 m and A T = 50  m: b loss = m,  loss = m 2, 2 n  loss  i c = 1/66 h For  T = 2 m and A T = 70  m: b loss = m,  loss = m 2, 2 n  loss  i c = 1/138 h  Blow-up (of transverse rms emittances) rates for the two cases above: For  T = 3 m and A T = 50  m:  bu = m 2 (  m/s), 2 n  bu  i c =  m/s For  T = 2 m and A T = 70  m:  bu = m 2 (  m/s), 2 n  bu  i c =  m/s (Again taking p-bars scattered out of the acceptance (thus lost) into account would give –not that much- larger blow-up) 5th April 2012, ELENA BPPC Residual Gas Effects C.Carli

Conclusions … some surprising observations  Many p-bars do not interact all at 100 keV during expected plateau duration  Large single scattering events dominate (even at injection), NO multiple small angle scattering  Blow-up overestimated with standard formulas (taking lost p-bars for blow- up into account) At a first glance (independent verification would be good!)  Situation looks fine even at 100 keV.. some acceptable losses  Single large angle scattering events lead to tails?  Other effects (IBS..) likely to dominate blow-up Systematic investigations (similar to AD study) and verifications to be done  Take ramps into account (average over different energies)  Details of the lattice  … 5th April 2012, ELENA BPPC Residual Gas Effects C.Carli