Splash Screen.

Slides:



Advertisements
Similar presentations
Shortcuts to Triangle Similarity Example 3-1a In the figure, and Determine which triangles in the figure are similar Vertical angles are congruent,
Advertisements

Splash Screen.
Introduction Congruent triangles have corresponding parts with angle measures that are the same and side lengths that are the same. If two triangles are.
EXAMPLE 3 Standardized Test Practice.
EXAMPLE 3 Standardized Test Practice. EXAMPLE 3 Standardized Test Practice SOLUTION The flagpole and the woman form sides of two right triangles with.
Geometry B Chapter Similar Triangles.
7-3 Proving Triangles Similar
7-3 Similar Triangles You used the AAS, SSS, and SAS Congruence Theorems to prove triangles congruent. Identify similar triangles using the AA Similarity.
Lesson 6-3 Similar Triangles. Ohio Content Standards:
Welcome to Interactive Chalkboard Glencoe Geometry Interactive Chalkboard Copyright © by The McGraw-Hill Companies, Inc. Developed by FSCreations, Inc.,
Ch 9.3 Determine whether the triangles are similar.
5-Minute Check on Lesson 6-2
Chapter 7: Proportions and Similarity
7.1 & 7.2 1/30/13. Bell Work 1. If ∆ QRS  ∆ ZYX, identify the pairs of congruent angles and the pairs of congruent sides. Solve each proportion
Similar Triangles 8.3.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 7–2) NGSSS Then/Now Postulate 7.1: Angle-Angle (AA) Similarity Example 1: Use the AA Similarity.
Side Splitting Theorem 8.4. Identify parallel lines in triangles. homework Learn the side splitting theorem. Use the side splitting theorem to solve problems.
5-Minute Check on Lesson 6-2 Transparency 6-3 Click the mouse button or press the Space Bar to display the answers. 1.Determine whether the triangles are.
Concept. Example 1 Use the AA Similarity Postulate A. Determine whether the triangles are similar. If so, write a similarity statement. Explain your reasoning.
1 2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt Ratios/ Proportions Similar.
Similar Triangles Similar Triangles – Two triangles are similar if and only if there is a correspondence between their vertices such that their corresponding.
Concept. Example 1 Use the AA Similarity Postulate A. Determine whether the triangles are similar. If so, write a similarity statement. Explain your reasoning.
Lesson 3 Menu 1.The quadrilaterals are similar. Write a similarity statement and find the scale factor of the larger quadrilateral to the smaller quadrilateral.
Section 7.3 Similar Triangles.
Warm-Up Since they are polygons, what two things must be true about triangles if they are similar?
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 7–2) CCSS Then/Now Postulate 7.1: Angle-Angle (AA) Similarity Example 1: Use the AA Similarity.
1. In ABC and XZW, m A = m X and m B = m Z
6.3 Similar Triangles.
Splash Screen.
 Then: You used AAS, SSS, and SAS Congruence Theorems to prove triangles congruent.  Now: 1. Identify similar triangles using the AA Similarity Postulate.
8.5 Proving Triangles are Similar. Side-Side-Side (SSS) Similarity Theorem If the lengths of the corresponding sides of two triangles are proportional,
Triangle Similarity Advanced Geometry Similarity Lesson 3.
Discovering…. As a table, list all of the triangle congruencies (6) and draw a sketch of each one. Once done, check out this link where you can discover.
Showing Triangles are Similar: AA, SSS and SAS
LESSON 7–3 Similar Triangles.
Warm up… checkpoint quiz page 429 #’s 1 – 10.
1. In ABC and XZW, m A = m X and m B = m Z
1. In ABC and XZW, m A = m X and m B = m Z
Splash Screen.
Introduction When a series of similarity transformations are performed on a triangle, the result is a similar triangle. When triangles are similar, the.
Section 6.4 AA Similarity Review Triangle Angle Sum Theorem
G.SRT.4 Prove theorems about triangles.
Bellwork Determine whether the triangles are similar. A B.
Similar Triangles.
7.3 Similar Triangles.
Check HW/Work on warm-up
Concept.
D. N. A x y 10 z PQRS~ABCD Find the scale factor of PQRS to ABCD. Find the value of x. Find the value of y. Find the value of z. Find the.
Similar Triangles Chapter 7-3.
Chapter 7: Proportions and Similarity Proportions Make a Frayer foldable 7.1 Ratio and Proportion.
Determine whether the triangles are similar.
Class Greeting.
D. N. A. 1) Are the following triangles similar? PQRS~CDAB
Objectives Student will learn how to determine if two triangles are similar using the triangle proofs and solve for missing variables of similar triangles.
7-3 Similar Triangles.
Introduction When a series of similarity transformations are performed on a triangle, the result is a similar triangle. When triangles are similar, the.
Test study Guide/Breakdown
Similar Triangles Chapter 7-3 TARGETS Identify similar triangles.
SIMILAR TRIANGLES.
Splash Screen.
Warm Up #24 1. If ∆QRS  ∆ZYX, identify the pairs of congruent angles and the pairs of congruent sides. Solve each proportion Q  Z; R.
∆JKL ∼ ∆MNO with a scale factor of 5:6
Objectives Prove certain triangles are similar by using AA, SSS, and SAS. Use triangle similarity to solve problems.
6.3 Similar Triangles.
Concept.
7.3 Similar Triangles Objective: Identify similar triangles using AA, SSS and SAS. Use similar triangles to solve problems.
7.3: Similar Triangles Similar triangles have congruent corresponding angles and proportional corresponding sides Z Y A C X B angle A angle X angle.
Objectives Prove certain triangles are similar by using AA, SSS, and SAS. Use triangle similarity to solve problems.
D. N. A. Are the following triangles similar? If yes, state the appropriate triangle similarity theorem ) 1) ) Find the value of x.
Five-Minute Check (over Lesson 7–2) Mathematical Practices Then/Now
Presentation transcript:

Splash Screen

Objectives I can determine if two triangles are similar using the triangle proofs I can solve for missing variables of similar triangles

Concept

Use the AA Similarity Postulate A. Determine whether the triangles are similar. If so, write a similarity statement. Explain your reasoning. Example 1

By the Triangle Sum Theorem, 42 + 58 + mA = 180, so mA = 80. Use the AA Similarity Postulate Since mB = mD, B D. By the Triangle Sum Theorem, 42 + 58 + mA = 180, so mA = 80. Since mE = 80, A E. Answer: So, ΔABC ~ ΔEDF by the AA Similarity. Example 1

Use the AA Similarity Postulate B. Determine whether the triangles are similar. If so, write a similarity statement. Explain your reasoning. Example 1

QXP NXM by the Vertical Angles Theorem. Use the AA Similarity Postulate QXP NXM by the Vertical Angles Theorem. Since QP || MN, Q N. Answer: So, ΔQXP ~ ΔNXM by AA Similarity. Example 1

A. Determine whether the triangles are similar A. Determine whether the triangles are similar. If so, write a similarity statement. Example 1

B. Determine whether the triangles are similar B. Determine whether the triangles are similar. If so, write a similarity statement. Example 1

Concept

Answer: So, ΔABC ~ ΔDEC by the SSS Similarity Theorem. Use the SSS and SAS Similarity Theorems A. Determine whether the triangles are similar. If so, write a similarity statement. Explain your reasoning. Answer: So, ΔABC ~ ΔDEC by the SSS Similarity Theorem. Example 2

By the Reflexive Property, M  M. Use the SSS and SAS Similarity Theorems B. Determine whether the triangles are similar. If so, write a similarity statement. Explain your reasoning. By the Reflexive Property, M  M. Answer: Since the lengths of the sides that include M are proportional, ΔMNP ~ ΔMRS by the SAS Similarity Theorem. Example 2

A. Determine whether the triangles are similar A. Determine whether the triangles are similar. If so, choose the correct similarity statement to match the given data. Example 2

B. David says the two triangles are similar by SSS similarity B. David says the two triangles are similar by SSS similarity. Is he correct? If no, explain why David is incorrect. Example 2

Parts of Similar Triangles ALGEBRA Given , RS = 4, RQ = x + 3, QT = 2x + 10, UT = 10, find RQ and QT. Example 4

Cross Products Property Parts of Similar Triangles Since because they are alternate interior angles. By AA Similarity, ΔRSQ ~ ΔTUQ. Using the definition of similar polygons, Substitution Cross Products Property Example 4

Distributive Property Parts of Similar Triangles Distributive Property Subtract 8x and 30 from each side. Divide each side by 2. Now find RQ and QT. Answer: RQ = 8; QT = 20 Example 4

TOTD ALGEBRA Given AB = 38.5, DE = 11, AC = 3x + 8, and CE = x + 2, find AC. Example 4

Understand Make a sketch of the situation. Indirect Measurement SKYSCRAPERS Josh wanted to measure the height of the Sears Tower in Chicago. He used a 12-foot light pole and measured its shadow at 1 p.m. The length of the shadow was 2 feet. Then he measured the length of Sears Tower’s shadow and it was 242 feet at the same time. What is the height of the Sears Tower? Understand Make a sketch of the situation. Example 5

So the following proportion can be written. Indirect Measurement Plan In shadow problems, you can assume that the angles formed by the Sun’s rays with any two objects are congruent and that the two objects form the sides of two right triangles. Since two pairs of angles are congruent, the right triangles are similar by the AA Similarity Postulate. So the following proportion can be written. Example 5

Cross Products Property Indirect Measurement Solve Substitute the known values and let x be the height of the Sears Tower. Substitution Cross Products Property Simplify. Divide each side by 2. Example 5

Answer: The Sears Tower is 1452 feet tall. Indirect Measurement Answer: The Sears Tower is 1452 feet tall. Check The shadow length of the Sears Tower is or 121 times the shadow length of the light pole. Check to see that the height of the Sears Tower is 121 times the height of the light pole. = 121  ______ 242 2 1452 12 Example 5

LIGHTHOUSES On her trip along the East coast, Jennie stops to look at the tallest lighthouse in the U.S. located at Cape Hatteras, North Carolina. At that particular time of day, Jennie measures her shadow to be 1 foot 6 inches in length and the length of the shadow of the lighthouse to be 53 feet 6 inches. Jennie knows that her height is 5 feet 6 inches. What is the height of the Cape Hatteras lighthouse to the nearest foot? A. 196 ft B. 39 ft C. 441 ft D. 89 ft Example 5

Concept