S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.

Slides:



Advertisements
Similar presentations
CMOS Comparator Data Converters Comparator Professor Y. Chiu
Advertisements

Electronics for large LAr TPC’s F. Pietropaolo (ICARUS Collaboration) CRYODET Workshop LNGS, March 2006.
R&D for ECAL VFE technology prototype -Gerard Bohner -Jacques Lecoq -Samuel Manen LPC Clermond-Ferrand, Fr -Christophe de La Taille -Julien Fleury -Gisèle.
EE435 Final Project: 9-Bit SAR ADC
GEMMA (GEM Mixed-signal Asic): Design & Developing Second Year Ph.D. Activity Report Alessandro PEZZOTTA 26 September 2013 Tutor: Prof. A. Baschirotto.
18/05/2015 Calice meeting Prague Status Report on ADC LPC ILC Group.
Design and Implementation a 8 bits Pipeline Analog to Digital Converter in The Technology 0.6 μm CMOS Process Eri Prasetyo.
Universitat de Barcelona Università di Roma 'La Sapienza' Front End Electronics for the SPD of LHCb Electronics in Experimental High Energy.
MDT-ASD PRR C. Posch30-Aug-02 1 Specifications, Design and Performance   Specifications Functional Analog   Architecture Analog channel Programmable.
Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun.
NA62 front end Layout in DM option Jan Kaplon/Pierre Jarron.
NA62 front end architecture and performance Jan Kaplon/Pierre Jarron.
Status of LAV FEE electronics G. Corradi, C. Paglia, D. Tagnani & M. Raggi, T. Spadaro, P. Valente.
1 SciFi electronics meeting – CERN– June 20 th 2011 Some ideas about a FE for a SciFi tracker based on SiPM A. Comerma, D. Gascón Universitat de Barcelona.
Calorimeter upgrade meeting – CERN – October 5 th 2010 Analog FE ASIC: first prototype Upgrade of the front end electronics of the LHCb calorimeter E.
R&D on pixel sensors at ILC ILC Workshop - November 2006 – Valencia.
L. Gallin-Martel, D. Dzahini, F. Rarbi, O. Rossetto
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology
R. Kass US LC Conference 1 Design and Fabrication of a Radiation-Hard 500-MHz Digitizer Using Deep Submicron Technology R. Kass The Ohio State University.
Readout ASIC for SiPM detector of the CTA new generation camera (ALPS) N.Fouque, R. Hermel, F. Mehrez, Sylvie Rosier-Lees LAPP (Laboratoire d’Annecy le.
S.Manen– IEEE Dresden – Oct A custom 12-bit cyclic ADC for the electromagnetic calorimeter of the International Linear Collider Samuel.
Preliminary measurements for the 8 channel prototype of SPD discriminator ASIC I.The 8 channel prototype. II.Status of the test. III.Noise. IV.Gain. V.Test.
QIE10 Issues Tom Zimmerman Fermilab Oct. 28,
B.Satyanarayana, TIFR, Mumbai. Architecture of front-end ASIC INO Collaboration Meeting VECC, Kolkata July 11-13, Amp_out 8:1 Analog Multiplexer.
Calorimeter upgrade meeting – Phone Conference– May 5 th 2010 First prototyping run Upgrade of the front end electronics of the LHCb calorimeter.
P. Baron CEA IRFU/SEDI/LDEFACTAR Meeting Santiago de Compostela March 11, A review of AFTER+ chip Its expected requirements At this time, AFTER+
L.ROYER – TWEPP Oxford – Sept The chip Signal processing for High Granularity Calorimeter (Si-W ILC) L.Royer, J.Bonnard, S.Manen, X.Soumpholphakdy.
Analog Building Blocks for P326 Gigatracker Front-End Electronics
Hold signal Variable Gain Preamp. Variable Slow Shaper S&H Bipolar Fast Shaper 64Trigger outputs Gain correction (6 bits/channel) discriminator threshold.
65 nm CMOS analog front-end for pixel detectors at the HL-LHC
Technical Report High Speed CMOS A/D Converter Circuit for Radio Frequency Signal Kyusun Choi Computer Science and Engineering Department The Pennsylvania.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
1 Status Report on ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN.
L.Royer – Calice Manchester – Sept A 12-bit cyclic ADC dedicated to the VFE electronics of Si-W Ecal Laurent ROYER, Samuel MANEN LPC Clermont-Ferrand.
ASIC Activities for the PANDA GSI Peter Wieczorek.
LHCb Calorimeter Upgrade Meeting – 10th September 2012 – CERN LHCb Calorimeter Upgrade Electronics: ASIC solution status E. Picatoste, D. Gascon Universitat.
Low Power, High-Throughput AD Converters
Production I.Yield. II.Acceptance criteria. III.Test. PS & SPD LHCb Calo PRR – March 2004 – CERN.
Low Power, High-Throughput AD Converters
SKIROC ADC measurements and cyclic ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting Orsay June.
Click to edit Master subtitle style Presented By Mythreyi Nethi HINP16C.
1 19 th January 2009 M. Mager - L. Musa Charge Readout Chip Development & System Level Considerations.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
Calorimeter upgrade meeting – LAL /Orsay – December 17 th 2009 Low noise preamplifier Upgrade of the front end electronics of the LHCb calorimeter.
Technical Report 4 for Pittsburgh Digital Greenhouse High Speed CMOS A/D Converter Circuit for Radio Frequency Signal Kyusun Choi Computer Science and.
CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Gigatracker Front end based on ultra fast NINO circuit P. Jarron, G. Anelli, F. Anghinolfi,
Mitglied der Helmholtz-Gemeinschaft Hardware characterization of ADC based DAQ-System for PANDA STT A. Erven, L. Jokhovets, P.Kulessa, H.Ohm,
CSNSM SPACIROC S. Ahmad, P. Barrillon, S. Blin, S. Dagoret, F. Dulucq, C. de La Taille IN2P3-OMEGA LAL Orsay, France Y. Kawasaki - RIKEN,Japan I. Hirokazu.
Low Power, High-Throughput AD Converters
Status of front-end electronics for the OPERA Target Tracker
KLOE II Inner Tracker FEE
A General Purpose Charge Readout Chip for TPC Applications
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
CTA-LST meeting February 2015
Analog FE circuitry simulation
High speed 12 bits Pipelined ADC proposal for the Ecal
R&D activity dedicated to the VFE of the Si-W Ecal
Hugo França-Santos - CERN
Calorimeter Upgrade Meeting
CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY
EUDET – LPC- Clermont VFE Electronics
LHCb calorimeter main features
1 Gbit/s Serial Link 1 Gbit/s Data Link Using Multi Level Signalling
BESIII EMC electronics
Status of the CARIOCA project
Signal processing for High Granularity Calorimeter
Readout Electronics for Pixel Sensors
Presented by T. Suomijärvi
Readout Electronics for Pixel Sensors
Presentation transcript:

S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions

S. Bota – Calorimeter Electronics overview - July 2002 SPD VFE ASIC Architecture

S. Bota – Calorimeter Electronics overview - July 2002 Review of ASIC runs RUN1 (Sep 2000) –Test separate blocs –1 full channel RUN2 (June 2001 – test beam) –4 full channels –test ECL vs CMOS output RUN 3 (Jan 2002) New tunnable subtractor 1 full channel with digital control On-chip DAC to program thresholds RUN 4 (May 2002) TESTED Under TEST In FAB

S. Bota – Calorimeter Electronics overview - July 2002 Features 0.8  m AMS BiCMOS Technology Processing speed 40 MHz Analog Processing + Digital Control Dual channel Fully differential SEU and SEL protection for digital logic Triple voting (custom output stage in FF) Guard rings Power consumption < 2 W / 64 channels Signal range. 0 to 5 MIP Electronics resolution 5% of 1 MIP Dynamic range: 40 dB (7 bits)

S. Bota – Calorimeter Electronics overview - July 2002 Run 2 Sept full channels test ECL vs CMOS output Pile-Up compensation fixed at 17%

S. Bota – Calorimeter Electronics overview - July 2002 Run 2: Experimental Results (I) Offset (Output Zero Error) Gain Gain T reset T reset Noise Noise Output range Output range Linearity error mV  io = 70 mV r.m.s (for a typical input pulse)  io = r.m.s. 5.5 ns (for 1 V output) about 1 mV r.m.s >  1V for an arbitrary input signal < 0.5 % full scale

S. Bota – Calorimeter Electronics overview - July 2002 Run 2: Experimental Results (II) Discriminator internal signals for a typ. pulse Interleaved operation of the 2 subchannels

S. Bota – Calorimeter Electronics overview - July 2002 Run 3 January full channel with digital control New tunnable subtractor On-chip Digital to Analog Converter to program thresholds

S. Bota – Calorimeter Electronics overview - July 2002 Run 3 DAC transfer function 3 different ref voltages 7 bits pseudo -differential DAC 1b for sign 6b for modulus R-2R architecture INL 3 different ref voltages

S. Bota – Calorimeter Electronics overview - July 2002 PMT DC current problem Solution 1.Build a new base supporting 100 uA 2.Reduce PMT gain (100 fC / MIP). 1.Increase PMT load Resistor (150   400  ) 2.Increase ASIC gain (factor 3) 3.Decrease threshold for 1 MIP by a factor 2. PMT supports only 100 uA DC (18 uA with present base) SPD at hottest point (10 % occupancy) 64 channels * 1pC / MIP * 0.1 / 25 ns = 250 uA

S. Bota – Calorimeter Electronics overview - July 2002 RUN 4 Sent Complete processing channel with digital control. Separate analog blocks + digital ctrl Works at 3.3 V to reduce power consumption. All blocks have been resdesigned at transistor level The previous power consumption per chip was 1.2 W, now it will be around 600 mW. Higher gain (x3) to meet PMT DC current limit requirements. A fully differential preamplifier is added before the integration stage. Towards final prototype Will be tested Sep-Oct 2002

S. Bota – Calorimeter Electronics overview - July 2002

Front End Amplifier Differential input. common mode interference is cancelled Offset compensation is possible using external resistors. High Bandwidth (> 200MHz). Low gain (  6). Low impedance output (independent integration switch). Layout optimised for matching: input transistors and resistors and current sources. 2-3 mV r.m.s. (calculated and simulated) 1 mV r.m.s. (calculated and measured) Noise (output) (random + pick-up) 5 MIP – 10 MIP (linearity ??) 5 MIP (1 V)Range (output) 100 mV200 mV1 MIP signal (output) FEA + integratorIntegratorInput stage RUN4RUN2/3 Offset (output) 70 mV r.m.s. (15 samples) ??

S. Bota – Calorimeter Electronics overview - July 2002 Front End Amplifier

S. Bota – Calorimeter Electronics overview - July 2002 Modified Track & Hold GUGGENB TRANSCONDUCTOR OUTPUT STAGE Differential Signal IntegComp DAC TRANSCONDUCTOR 0 <  < 1/2

S. Bota – Calorimeter Electronics overview - July 2002 GUGGENB TRANSCONDUCTOR OUTPUT STAGE IntegComp DAC TRANSCO NDUCTOR

S. Bota – Calorimeter Electronics overview - July 2002

poly2

S. Bota – Calorimeter Electronics overview - July 2002

RUN 5 Design Completed Area: 30 mm2 8 full channels + digital ctrl Works at 3.3 V to reduce power consumption Higher gain to meet PMT current limit requirements.