EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter
Advertisements

Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter
L28 April 281 EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011 Professor Ronald L. Carter
CMOS Digital Integrated Circuits
Lecture 15 OUTLINE MOSFET structure & operation (qualitative)
Metal-Oxide-Semiconductor (MOS)
Spring 2007EE130 Lecture 30, Slide 1 Lecture #30 OUTLINE The MOS Capacitor Electrostatics Reading: Chapter 16.3.
ECE 431 Digital Circuit Design Chapter 3 MOS Transistor (MOSFET) (slides 2: key Notes) Lecture given by Qiliang Li 1.
EE 466: VLSI Design Lecture 03.
L30 May 61 EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 - Spring 2004 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011 Professor Ronald L. Carter
EXAMPLE 6.1 OBJECTIVE Fp = 0.288 V
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 30 Metal-Semiconductor Contacts Real semiconductor devices and ICs always contain.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – Poly-Si gate depletion effect – V T adjustment Reading: Pierret ; Hu.
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
L23 08April031 Semiconductor Device Modeling and Characterization EE5342, Lecture 23 Spring 2003 Professor Ronald L. Carter
Structure and Operation of MOS Transistor
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – V T adjustment – Poly-Si gate depletion effect Reading: Pierret ; Hu.
Professor Ronald L. Carter
L06 31Jan021 Semiconductor Device Modeling and Characterization EE5342, Lecture 6-Spring 2002 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 5 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter
L27 23Apr021 Semiconductor Device Modeling and Characterization EE5342, Lecture 27 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
L19 26Mar021 Semiconductor Device Modeling and Characterization EE5342, Lecture 19 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 April 12, 2010 Professor Ronald L. Carter
The MOS capacitor. (a) Physical structure of an n+-Si/SiO2/p-Si MOS capacitor, and (b) cross section (c) The energy band diagram under charge neutrality.
EE130/230A Discussion 10 Peng Zheng.
L26 April 261 EE5342 – Semiconductor Device Modeling and Characterization Lecture 26 - Spring 2005 Professor Ronald L. Carter
L25 April 171 Semiconductor Device Modeling & Characterization Lecture 25 Professor Ronald L. Carter Spring 2001.
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
ECE574 – Lecture 3 Page 1 MA/JT 1/14/03 MOS structure MOS: Metal-oxide-semiconductor –Gate: metal (or polysilicon) –Oxide: silicon dioxide, grown on substrate.
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 27 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2009
Semiconductor Device Modeling & Characterization Lecture 19
EE 2303/001 - Electronics I Summer 2001 Lecture 15
Semiconductor Device Modeling & Characterization Lecture 21
Semiconductor Device Modeling & Characterization Lecture 20
EE 5340 Semiconductor Device Theory Lecture 29 - Fall 2010
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
Semiconductor Device Modeling & Characterization Lecture 23
Presentation transcript:

EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L. Carter

©rlc L25-21Apr20112 Ideal 2-terminal MOS capacitor/diode x -x ox 0 SiO 2 silicon substrate V gate V sub conducting gate, area = LW t sub 0 y L

©rlc L25-21Apr20113 MOS surface states** p- substr = n-channel

©rlc L25-21Apr20114 MOS Bands at OSI p-substr = n-channel Fig 10.9* 2q|  p | qpqp x d,max

©rlc L25-21Apr20115 Equivalent circuit for accumulation Accum depth analogous to the accum Debye length = L D,acc = [  V t /(qp s )] 1/2 Accum cap, C’ acc =  Si /L D,acc Oxide cap, C’ Ox =  Ox /x Ox Net C is the series comb C’ Ox C’ acc

©rlc L25-21Apr20116 Equivalent circuit for Flat-Band Surface effect analogous to the extr Debye length = L D,extr = [  V t /(qN a )] 1/2 Debye cap, C’ D,extr =  Si /L D,extr Oxide cap, C’ Ox =  Ox /x Ox Net C is the series comb C’ Ox C’ D,extr

©rlc L25-21Apr20117 Equivalent circuit for depletion Depl depth given by the usual formula = x depl = [2  Si (V bb )/(qN a )] 1/2 Depl cap, C’ depl =  Si /x depl Oxide cap, C’ Ox =  Ox /x Ox Net C is the series comb C’ Ox C’ depl

©rlc L25-21Apr20118 Equivalent circuit above OSI Depl depth given by the maximum depl = x d,max = [2  Si |2  p |/(qN a )] 1/2 Depl cap, C’ d,min =  Si /x d,max Oxide cap, C’ Ox =  Ox /x Ox Net C is the series comb C’ Ox C’ d,min

©rlc L25-21Apr20119 Differential charges for low and high freq From Fig 10.27* high freq.

©rlc L25-21Apr Ideal low-freq C-V relationship Fig 10.25*

©rlc L25-21Apr Comparison of low and high freq C-V Fig 10.28*

©rlc L25-21Apr Effect of Q’ ss on the C-V relationship Fig 10.29*

©rlc L25-21Apr Flat band condition (approx. scale) E c,Ox EvEv AlSiO 2 p-Si q(  m -  ox )= 3.15 eV E Fm E Fp EcEc EvEv E Fi q(  ox -  Si )=3.1eV E g,ox ~8eV q  fp = 3.95eV

©rlc L25-21Apr Flat-band parameters for n-channel (p-subst)

©rlc L25-21Apr Flat-band parameters for p-channel (n-subst)

©rlc L25-21Apr Fig 10.15*  ms (V) N B (cm -3 ) Typical  ms values

©rlc L25-21Apr Flat band with oxide charge (approx. scale) EvEv AlSiO 2 p-Si E Fm E c,Ox E g,ox ~8eV E Fp EcEc EvEv E Fi q(  fp -  ox ) q(V ox ) q(  m -  ox ) q(V FB ) V FB = V G -V B, when Si bands are flat ExEx + -

©rlc L25-21Apr Inversion for p-Si V gate >V Th >V FB V gate > V FB V sub = 0 E Ox,x > 0 Acceptors Depl Reg e - e - e - e - e -

©rlc L25-21Apr Approximation concept “Onset of Strong Inv” OSI = Onset of Strong Inversion occurs when n s = N a = p po and V G = V Th Assume n s = 0 for V G < V Th Assume x depl = x d,max for V G = V Th and it doesn’t increase for V G > V Th C d,min =  Si /x d,max for V G > V Th Assume n s > 0 for V G > V Th

©rlc L25-21Apr MOS Bands at OSI p-substr = n-channel Fig 10.9* 2q|  p | qpqp x d,max

©rlc L25-21Apr Computing the D.R. W and Q at O.S.I. ExEx E max x

©rlc L25-21Apr Calculation of the threshold cond, V T

©rlc L25-21Apr Equations for V T calculation

©rlc L25-21Apr Fully biased n-MOS capacitor 0 y L VGVG V sub =V B E Ox,x > 0 Acceptors Depl Reg e - e - e - e - e - e - n+ VSVS VDVD p-substrate Channel if V G > V T

©rlc L25-21Apr MOS energy bands at Si surface for n-channel Fig 8.10**

©rlc L25-21Apr Computing the D.R. W and Q at O.S.I. ExEx E max x

©rlc L25-21Apr Q’ d,max and x d,max for biased MOS capacitor Fig 8.11** x d,max (  m)

©rlc L25-21Apr Fully biased n- channel V T calc

©rlc L25-21Apr n-channel V T for V C = V B = 0 Fig 10.20*

©rlc L25-21Apr Fully biased p- channel V T calc

©rlc L25-21Apr p-channel V T for V C = V B = 0 Fig 10.21*

©rlc L25-21Apr n-channel enhancement MOSFET in ohmic region 0< V T < V G V B < 0 E Ox,x > 0 Acceptors Depl Reg V S = 0 0< V D < V DS,sat e - e - e - e - e - n+ p-substrate Channel

©rlc L25-21Apr Conductance of inverted channel Q’ n = - C’ Ox (V GC -V T ) n’ s = C’ Ox (V GC -V T )/q, (# inv elect/cm 2 ) The conductivity  n = (n’ s /t) q  n G =  n (Wt/L) = n’ s q  n (W/L) = 1/R, so I = V/R = dV/dR, dR = dL/(n’ s q  n W)

©rlc L25-21Apr Basic I-V relation for MOS channel

©rlc L25-21Apr I-V relation for n-MOS (ohmic reg) IDID V DS V DS,sat I D,sat ohmic non-physical saturated

©rlc L25-21Apr References * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, **Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986

©rlc L25-21Apr Computing the D.R. W and Q at O.S.I. ExEx E max x