SOLREVIEWSOLREVIEW THE GEOMETRY SOLs Use the arrow keys   to move forward or backward. ( in review )

Slides:



Advertisements
Similar presentations
Given: is a rhombus. Prove: is a parallelogram.
Advertisements

Proving Triangles Congruent
Proving Triangles Congruent
CCGPS Analytic Geometry
Proving Triangles Congruent
1 MM1G3c Proving Triangles Congruent (AAS, HL). 2 Postulates AAS If two angles and a non included side of one triangle are congruent to the corresponding.
Proving Triangles Congruent
Similarity & Congruency Dr. Marinas Similarity Has same shape All corresponding pairs of angles are congruent Corresponding pairs of sides are in proportion.
4.6 Using Congruent Triangles
Proving Triangles Congruent
Chapter 9 Geometry © 2008 Pearson Addison-Wesley. All rights reserved.
Using Congruent Triangles Geometry Mrs. Spitz Fall 2004.
Section 9-3 The Geometry of Triangles: Congruence, Similarity, and the Pythagorean Theorem.
Angles and Parallel Lines
PARALLEL LINES CUT BY A TRANSVERSAL
Module 5 Lesson 2 – Part 2 Writing Proofs
What are the ways we can prove triangles congruent? A B C D Angle C is congruent to angle A Angle ADB is congruent to angle CDB BD is congruent to BD A.
Quarterly 2 Test Review. HL Thm SSS Post. AAS Thm.
Similarity and Parallelograms.  Polygons whose corresponding side lengths are proportional and corresponding angles are congruent.
Angle Relationships, Similarity and Parallelograms.
1-3 Points, Lines, Planes plane M or plane ABC (name with 3 pts) A point A Points A, B are collinear Points A, B, and C are coplanar Intersection of two.
Jeopardy Chapter 1Chapter 2Chapter 3Chapter 4Chapter 5 Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $200 Q $300 Q $400 Q $500.
BasicsGeo TermsLinesTrianglesMore triangles
AG Warm-up ANY QUESTIONS ON THE STUDY GUIDE???.
Proving Triangles Congruent. Steps for Proving Triangles Congruent 1.Mark the Given. 2.Mark … reflexive sides, vertical angles, alternate interior angles,
Theorems Theorem 6.6: If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram. ABCD is a parallelogram.
Congruent Angles Associated with Parallel Lines. Parallel Postulate: Through a point not on a line, there is exactly one parallel to the given line. a.
Basics of Euclidean Geometry Point Line Number line Segment Ray Plane Coordinate plane One letter names a point Two letters names a line, segment, or ray.
Conceptual Geometry Exam Review. Round 1 PolygonsVocabularyAnglesTriangles $100 $200 $300.
Parallel and Perpendicular Lines
6.3 Proving Quadrilaterals are Parallelograms
Unit 1 Angles and Parallel Lines. Transversal Definition: A line that intersects two or more lines in a plane at different points is called a transversal.
Unit 4 Proving Triangles Congruent (SSS, SAS, ASA, AAS, HL)
10/8/12 Triangles Unit Congruent Triangle Proofs.
2.5 Reasoning in Algebra and geometry
Section 7-4 Similar Triangles.
Unit 2 Part 4 Proving Triangles Congruent. Angle – Side – Angle Postulate If two angles and the included side of a triangle are congruent to two angles.
6.3 Proving Quadrilaterals are Parallelograms Standard: 7.0 & 17.0.
Unit 7 Congruency and Similarity Proving Triangles Congruent (SSS, SAS, ASA, AAS, and HL)
Chapter 4 Ms. Cuervo. Vocabulary: Congruent -Two figures that have the same size and shape. -Two triangles are congruent if and only if their vertices.
Pythagorean Theorem Theorem. a² + b² = c² a b c p. 20.
Using Special Quadrilaterals
Geometry SOL review Session 2. Triangle relationships Congruent triangles Similar triangles Right triangles Triangle inequalities.
Geometry Worksheets Congruent Triangles #3.
4-4 Using Corresponding Parts of Congruent Triangles I can determine whether corresponding parts of triangles are congruent. I can write a two column proof.
Triangle Proofs. USING SSS, SAS, AAS, HL, & ASA TO PROVE TRIANGLES ARE CONGRUENT STEPS YOU SHOULD FOLLOW IN PROOFS: 1. Using the information given, ______________.
Chapters 2 – 4 Proofs practice. Chapter 2 Proofs Practice Commonly used properties, definitions, and postulates  Transitive property  Substitution property.
Congruent Angles Associated with Parallel Lines Section 5.3.
Proving Triangles Congruent
Proving Triangles Congruent
Warm Up (on the ChromeBook cart)
Angles and Parallel Lines
2.1 Patterns and Inductive Reasoning
Proving Triangles Congruent
7-3 Triangle Similarity: AA, SSS, SAS
Warm Up (on handout).
Proving Triangles Congruent
6.3 Proving Quadrilaterals are Parallelograms
with Selected Review Questions from Previous Material
Proving Triangles Congruent
Use the arrow keys   to move forward or backward.
Angles and Parallel Lines
Angles and Parallel Lines
Proving Triangles Congruent
9.2 Proving Quadrilaterals are Parallelograms
Proving Triangles Congruent
S O L R E V I W Proving ∆s Congruent Type notes here.
Successful Proof Plans
Presentation transcript:

SOLREVIEWSOLREVIEW THE GEOMETRY SOLs Use the arrow keys   to move forward or backward. ( in review )

SOLREVIEWSOLREVIEW Conditional Statements “ If p then q. ” C onverse: I nverse: The Law of Syllogism C ontrapositive : =

SOLREVIEWSOLREVIEW Conditional Statements “ If p then q. ” C onverse: The Law of Syllogism C ontrapositive : “ If q then p. ” = I nverse:

SOLREVIEWSOLREVIEW Conditional Statements “ If p then q. ” C onverse: I nverse: The Law of Syllogism C ontrapositive : “ If q then p. ” “ If - p then - q. ” =

SOLREVIEWSOLREVIEW Conditional Statements “ If p then q. ” C onverse: I nverse: The Law of Syllogism C ontrapositive : “ If q then p. ” “ If - p then - q. ” “ If - q then - p. ” =

SOLREVIEWSOLREVIEW Conditional Statements “ If p then q. ” C onverse: I nverse: The Law of Syllogism C ontrapositive : “ If q then p. ” “ If - p then - q. ” “ If - q then - p. ” = The Transitive Property

SOLREVIEWSOLREVIEW Formulas : Slope = Midpoint = Distance = for two points (X 1, Y 1 ) and ( X 2, Y 2 )

SOLREVIEWSOLREVIEW Formulas : Slope = Midpoint = Distance = for two points (X 1, Y 1 ) and ( X 2, Y 2 )

SOLREVIEWSOLREVIEW Formulas : Slope = Midpoint = Distance = for two points (X 1, Y 1 ) and ( X 2, Y 2 )

SOLREVIEWSOLREVIEW Formulas : Slope = Midpoint = Distance = for two points (X 1, Y 1 ) and ( X 2, Y 2 )

SOLREVIEWSOLREVIEW Parallel Lines and Angles

SOLREVIEWSOLREVIEW Corresponding Angles are...

SOLREVIEWSOLREVIEW Parallel Lines and Angles Corresponding Angles are...

SOLREVIEWSOLREVIEW Parallel Lines and Angles Corresponding Angles are... Name them !

SOLREVIEWSOLREVIEW Parallel Lines and Angles Corresponding Angles are... Name them !

SOLREVIEWSOLREVIEW Parallel Lines and Angles Alternate Interior Angles are...

SOLREVIEWSOLREVIEW Parallel Lines and Angles Alternate Interior Angles are...

SOLREVIEWSOLREVIEW Parallel Lines and Angles Alternate Interior Angles are... Name them !

SOLREVIEWSOLREVIEW Parallel Lines and Angles Alternate Interior Angles are... Name them !

SOLREVIEWSOLREVIEW Parallel Lines and Angles Consecutive Interior Angles are...

SOLREVIEWSOLREVIEW Parallel Lines and Angles Consecutive Interior Angles are... Supplementary

SOLREVIEWSOLREVIEW Parallel Lines and Angles Consecutive Interior Angles are... Name them ! Supplementary

SOLREVIEWSOLREVIEW Parallel Lines and Angles Consecutive Interior Angles are... Name them ! Supplementary

SOLREVIEWSOLREVIEW Proving ∆s Congruent

SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB

SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB

SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB the reflexive side

SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB

SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB

SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB alt. int. angles /reflexive side

SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB

SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB

SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB the reflexive side

SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABC ∆DEC

SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABC ∆DEC

SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABC ∆DEC vertical angles

SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB

SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB

SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB alt. int. angles /reflexive side

SOLREVIEWSOLREVIEW Angles of Regular Polygons ?

SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6 Angles of Regular Polygons ?

SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6 Angles of Regular Polygons ? 360˚ The answer for all polygons

SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚ Angles of Regular Polygons ?

SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚ Angles of Regular Polygons ? 360˚ 6 n

SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚60˚ Angles of Regular Polygons ? 60˚

SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚60˚ Angles of Regular Polygons ? 60˚ 60˚ + ? = 180˚ (Linear Pair of Angles)

SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚60˚120˚ Angles of Regular Polygons ? 120˚

SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚60˚120˚ Angles of Regular Polygons ? 120˚ (n)(120˚) (6)(120˚)

SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚60˚120˚720˚ Angles of Regular Polygons 120˚ (n)(120˚) (6)(120˚)

SOLREVIEWSOLREVIEW Similar Triangles

SOLREVIEWSOLREVIEW Since ∆ABC ∆EFG, then the scale factor of ∆ABC to ∆EFG is... ~

SOLREVIEWSOLREVIEW Similar Triangles Since ∆ABC ∆EFG, then the scale factor of ∆ABC to ∆EFG is... ~ 2 1 or 2:1

SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~

SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ E D C

SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ Why are the triangles similar? E D C

SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ AA Similarity Why are the triangles similar? E D C

SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ If AB = 8, AC = 5, BC = 7, CD = 18 then find DE. E D C x

SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ If AB = 8, AC = 5, BC = 7, CD = 18 then find DE. E D C x = AB DE BC DC small ∆ big ∆

SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ If AB = 8, AC = 5, BC = 7, CD = 18 then find DE. E D C x = 8 x 7

SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ If AB = 8, AC = 5, BC = 7, CD = 18 then find DE. E D C x = 8 x 7 (8)(18) = (7)(x) cross multiply

SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ If AB = 8, AC = 5, BC = 7, CD = 18 then find DE. E D C x = 8 x 7 (8)(18) = (7)(x) cross multiply = x

SOLREVIEWSOLREVIEW Right Triangles

SOLREVIEWSOLREVIEW Pythagorean Thm. Special Right Triangles Trig.

SOLREVIEWSOLREVIEW Right Triangles Pythagorean Thm. a b c What is the formula?

SOLREVIEWSOLREVIEW Right Triangles Pythagorean Thm. a b c

SOLREVIEWSOLREVIEW Right Triangles Special Right Triangles

SOLREVIEWSOLREVIEW ˚ ˚ 30˚ Right Triangles Special Right Triangles

SOLREVIEWSOLREVIEW ˚ ˚ 30˚ Right Triangles Special Right Triangles What’s the pattern ?

SOLREVIEWSOLREVIEW ˚ x 2x 60˚ 30˚ Right Triangles Special Right Triangles What’s the pattern ?

SOLREVIEWSOLREVIEW ˚ x 2x 60˚ 30˚ Right Triangles Special Right Triangles What’s the pattern ?

SOLREVIEWSOLREVIEW x x 45˚ x 2x 60˚ 30˚ Right Triangles Special Right Triangles What’s the pattern ?

SOLREVIEWSOLREVIEW Right Triangles Trigonometry

SOLREVIEWSOLREVIEW Right Triangles Trigonometry Angle of Perspective How are the sides labeled ?

SOLREVIEWSOLREVIEW Right Triangles Trigonometry Angle of Perspective Hyp. Adj. Opp.

SOLREVIEWSOLREVIEW Right Triangles Trigonometry Angle of Perspective Hyp. Adj. Opp. What are the 3 Trig. Ratios ?

SOLREVIEWSOLREVIEW Right Triangles Trigonometry Tan. = Opp. Adj. Cos. = Hyp. Adj. Sin. = Hyp. Opp. Angle of Perspective Hyp. Adj. Opp.

SOLREVIEWSOLREVIEW Circle Formulas Angles Segments

SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.

SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.

SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?

SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?

SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.

SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.

SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?

SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?

SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.

SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.

SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?

SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?

SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.

SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.

SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?

SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?

SOLREVIEWSOLREVIEW Circle Formulas Segments Intersecting Chords What is the formula?

SOLREVIEWSOLREVIEW Circle Formulas Segments Intersecting Chords What is the formula?

SOLREVIEWSOLREVIEW Circle Formulas Segments Intersecting Secants What is the formula?

SOLREVIEWSOLREVIEW Circle Formulas Segments Intersecting Secants What is the formula? or