Professor Fabrice PIERRON LMPF Research Group, ENSAM Châlons en Champagne, France THE VIRTUAL FIELDS METHOD The principle of virtual work Paris Châlons en Champagne
or Equilibrium equations (static) + boundary conditions strong (local) weak (global) Valid for any KA virtual fields
Illustration of the PVW Section S F e1e1 e2e2 l L0L0
Over element 1 1F1F Local equilibrium:
21 Forces exerted by 2 over 1 F e1e1 e2e2 Section S L 0 -x 1
Resultant of internal forces 1 F1F1 21 F e1e1 e2e2 Section S L 0 -x 1
Equilibrium
Valid over any section S of the beam: integration over x 1 Eq. 1 Eq. 2 Eq. 3
Principle of virtual work (static, no volume forces) Let us write a virtual field: e1e1 F e2e2 L0L0 l
Eq. 1 e1e1 F e2e2 L0L0 l
Let us write another virtual field: F e1e1 e2e2 L0L0 l
Eq. 2 F e1e1 e2e2 L0L0 l
F e1e1 e2e2 L0L0 l Let us write a 3rd field: virtual bending
Eq. 3 F e1e1 e2e2 L0L0 l