Social Computing and Big Data Analytics 社群運算與大數據分析

Slides:



Advertisements
Similar presentations
Data Warehousing 資料倉儲 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University Dept. of Information ManagementTamkang.
Advertisements

Case Study for Information Management 資訊管理個案
HSR 課程介紹. 指定用書 Health Services Research Method Leiyu Shi 2008.
Chapter 0 Computer Science (CS) 計算機概論 教學目標 瞭解現代電腦系統之發展歷程 瞭解電腦之元件、功能及組織架構 瞭解電腦如何表示資料及其處理方式 學習運用電腦來解決問題 認知成為一位電子資訊人才所需之基本條 件 認知進階電子資訊之相關領域.
計算機視覺研究室 專題實作簡報 張元翔 老師.
1 真理大學運輸管理學系 實務實習說明 目錄  實務實習類別  實務實習條例  校外實習單位  實務實習成績計算方式  校外實習甄選 / 自洽申請流程  附錄:相關表格.
元智大學應用外語系碩士班 Department of Foreign Languages and Applied Linguistics Master’s Program.
真理大學航空運輸管理學系 實務實習說明. 實務實習部份 實務實習 校內實習 校外實習 實習時數必須在 300 小時 ( 含 ) 以上才承認 校內實習時數及實習成績。 二個寒假 各一個月 暑假兩個月.
統計資訊軟體應用 授課者:蔡桂宏 系別:應用統計資訊系 職務:專任副教授 連絡: 轉 3485 系辦
電子計算機概論電子計算機概論 教科書 計算機概論 Introduction to Computers 原著: Peter Norton 審閱: 陳正雄‧趙立本‧簡文山‧林碧蘭 編譯:普羅數位科技 總審閱:林志敏 NT 590 洽助教.
論文研討 ( 一 ) B 組 課程簡介 劉美纓 / 尚榮安 / 胡凱傑 2009/09/17. 一、課程基本資料 科目名稱: ( 中文 ) 論文研討(一)B組 ( 英文 ) SEMINARS (I) 開課學期: 98 學年度第 1 學期 開課班級:企碩一 學 分 數: 2 學分 星期節次: 四 34.
大華技術學院九十三學年度 資工系計算機概論教學大綱 吳弘翔. Wu Hung-Hsiang2 科目名稱:計算機概論與實習 適用班別:夜資工技一A 授課老師:吳弘翔 學分數: 4 修別:必修 老師信箱:
鄭瑞興的個人簡介 中山資工所 鄭瑞興.
教材名稱:網際網路安全之技術及其應用 (編號: 41 ) 計畫主持人:胡毓忠 副教授 聯絡電話: 教材網址: 執行單位: 政治大學資訊科學系.
1 高等演算法 授課老師 : 陳建源 研究室 : 法 401 網站
大華技術學院九十五學年度 資工系計算機概論教學大綱 吳弘翔. Wu Hung-Hsiang2 科目名稱:計算機概論與實習 授課老師:吳弘翔 學分數: 4 修別:必修 老師信箱:
報告人:陳錦生 校長 日 期: 99 年 10 月 21 日. 自我評鑑報告內容簡介 校務評鑑五大項目 自我評鑑過程 簡述自我評鑑過程 學校現況 校地、教職員生數、圖書冊數、院系所學位學程.
高等行動通訊課程簡介 許智舜 Office: S515 Tel:3351.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 壹 企業研究導論.
1 高等管理資訊系統. 2 授課教師 : 王耀德 研究室 : 主顧 686 電話 : (04) # 課輔時間 Wednesday 09:00~13:00 介紹.
全國奈米科技人才培育推動計畫辦公室 中北區奈米科技K -12 教育發展中心計畫 簡 報 報告人:楊鏡堂教授 計畫執行單位:國立清華大學動力機械工程學系 計畫種子學校:教育部顧問室 94 年度奈米科技人才培育先導型計畫年度成果報告 中華民國九十四年十月十四日.
Case Study for Information Management 資訊管理個案
Data Warehousing 資料倉儲 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University Dept. of Information ManagementTamkang.
Social Media Marketing Research 社會媒體行銷研究 SMMR01 TMIXM1A Thu 7,8 (14:10-16:00) U505 Course Orientation for Social Media Marketing Research Min-Yuh.
Business Intelligence 商業智慧 BI01 IM EMBA Fri 12,13,14 (19:20-22:10) D502 Introduction to Business Intelligence 商業智慧導論 Min-Yuh Day 戴敏育 Assistant Professor.
Case Study for Information Management 資訊管理個案 CSIM4B06 TLMXB4B (M1824) Tue 2, 3, 4 (9:10-12:00) B502 Foundations of Business Intelligence - Database.
企業網路系統研究 (Enterprise Networking Systems Research) (VMware vSphere) VM01 MI4 Thu 9,10 (16:10-18:00) (B310) Course Introduction ( 課程介紹 ) Min-Yuh Day.
社會媒體服務專題 Special Topics in Social Media Services 淡江大學 淡江大學 資訊管理學系 資訊管理學系 Dept. of Information ManagementDept. of Information Management, Tamkang UniversityTamkang.
Business Intelligence Trends 商業智慧趨勢 BIT08 MIS MBA Mon 6, 7 (13:10-15:00) Q407 商業智慧導入與趨勢 (Business Intelligence Implementation and Trends) Min-Yuh.
Social Media Management 社會媒體管理 SMM01 TMIXM1A Fri. 7,8 (14:10-16:00) L215 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management,
Case Study for Information Management 資訊管理個案 CSIM4B07 TLMXB4B (M1824) Tue 2, 3, 4 (9:10-12:00) B502 Telecommunications, the Internet, and Wireless.
Data Mining 資料探勘 Introduction to Data Mining 資料探勘導論 Min-Yuh Day 戴敏育
商業智慧實務 Practices of Business Intelligence BI01 MI4 Wed, 9,10 (16:10-18:00) (B113) 商業智慧導論 (Introduction to Business Intelligence) Min-Yuh Day 戴敏育.
Social Media Marketing Management 社會媒體行銷管理 SMMM12 TLMXJ1A Tue 12,13,14 (19:20-22:10) D325 確認性因素分析 (Confirmatory Factor Analysis) Min-Yuh Day 戴敏育.
Social Media Marketing Analytics 社群網路行銷分析 SMMA04 TLMXJ1A (MIS EMBA) Fri 12,13,14 (19:20-22:10) D326 測量構念 (Measuring the Construct) Min-Yuh Day 戴敏育.
商業智慧實務 Practices of Business Intelligence BI06 MI4 Wed, 9,10 (16:10-18:00) (B130) 資料科學與巨量資料分析 (Data Science and Big Data Analytics) Min-Yuh Day 戴敏育.
Case Study for Information Management 資訊管理個案 CSIM4B08 TLMXB4B Thu 8, 9, 10 (15:10-18:00) B508 Securing Information System: 1. Facebook, 2. European.
Case Study for Information Management 資訊管理個案 CSIM4B03 TLMXB4B (M1824) Tue 3,4 (10:10-12:00) L212 Thu 9 (16:10-17:00) B601 Global E-Business and Collaboration:
商業智慧實務 Practices of Business Intelligence BI01 MI4 Wed, 9,10 (16:10-18:00) (B130) 商業智慧導論 (Introduction to Business Intelligence) Min-Yuh Day 戴敏育.
Business Intelligence Trends 商業智慧趨勢 BIT01 MIS MBA Mon 6, 7 (13:10-15:00) Q407 Course Orientation for Business Intelligence Trends 商業智慧趨勢課程介紹 Min-Yuh.
Data Mining 資料探勘 DM04 MI4 Wed, 6,7 (13:10-15:00) (B216) 分群分析 (Cluster Analysis) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management,
Social Media Marketing Management 社會媒體行銷管理 SMMM01 TLMXJ1A Tue 12,13,14 (19:20-22:10) D325 Course Orientation of Social Media Marketing Management.
Social Media Marketing Research 社會媒體行銷研究 SMMR04 TMIXM1A Thu 7,8 (14:10-16:00) L511 Marketing Research Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
Data Mining 資料探勘 DM01 MI4 Wed, 6,7 (13:10-15:00) (B216) Introduction to Data Mining ( 資料探勘導論 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of.
Data Mining 資料探勘 Introduction to Data Mining (資料探勘導論) Min-Yuh Day 戴敏育
Case Study for Information Management 資訊管理個案
Big Data Mining 巨量資料探勘 DM01 MI4 (M2244) (3094) Tue, 3, 4 (10:10-12:00) (B216) Course Orientation for Big Data Mining ( 巨量資料探勘課程介紹 ) Min-Yuh Day 戴敏育.
Case Study for Information Management 資訊管理個案 CSIM4C01 TLMXB4C Mon 8, 9, 10 (15:10-18:00) B602 Introduction to Case Study for Information Management.
巨量資料基礎: MapReduce典範、Hadoop與Spark生態系統
Case Study for Information Management 資訊管理個案 CSIM4C01 TLMXB4C (M1824) Tue 2 (9:10-10:00) L212 Thu 7,8 (14:10-16:00) B601 Introduction to Case Study.
社群網路行銷管理 Social Media Marketing Management SMMM01 MIS EMBA (M2200) (8615) Thu, 12,13,14 (19:20-22:10) (D309) 社群網路行銷管理課程介紹 (Course Orientation for.
Social Computing and Big Data Analytics 社群運算與大數據分析
Social Computing and Big Data Analytics 社群運算與大數據分析 SCBDA02 MIS MBA (M2226) (8628) Wed, 8,9, (15:10-17:00) (Q201) Data Science and Big Data Analytics:
Case Study for Information Management 資訊管理個案 CSIM4B01 TLMXB4B (M1824) Tue 2, 3, 4 (9:10-12:00) B502 Introduction to Case Study for Information Management.
Social Computing and Big Data Analytics 社群運算與大數據分析 SCBDA05 MIS MBA (M2226) (8628) Wed, 8,9, (15:10-17:00) (B309) Big Data Analytics with Numpy in.
Social Computing and Big Data Analytics 社群運算與大數據分析
Social Computing and Big Data Analytics 社群運算與大數據分析
Big Data Mining 巨量資料探勘 DM05 MI4 (M2244) (3094) Tue, 3, 4 (10:10-12:00) (B216) 分群分析 (Cluster Analysis) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
巨量資料基礎: MapReduce典範、Hadoop與Spark生態系統
Social Computing and Big Data Analytics 社群運算與大數據分析
Social Computing and Big Data Analytics 社群運算與大數據分析
Course Orientation for Big Data Mining (巨量資料探勘課程介紹)
大數據行銷研究 Big Data Marketing Research
Case Study for Information Management 資訊管理個案
分群分析 (Cluster Analysis)
大數據行銷研究 Big Data Marketing Research
商業智慧實務 Practices of Business Intelligence
Case Study for Information Management 資訊管理個案
Case Study for Information Management 資訊管理個案
Case Study for Information Management 資訊管理個案
Presentation transcript:

Social Computing and Big Data Analytics 社群運算與大數據分析 Tamkang University Social Computing and Big Data Analytics 社群運算與大數據分析 Tamkang University Course Orientation for Social Computing and Big Data Analytics (社群運算與大數據分析課程介紹) 1042SCBDA01 MIS MBA (M2226) (8628) Wed, 8,9, (15:10-17:00) (Q201) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University 淡江大學 資訊管理學系 http://mail. tku.edu.tw/myday/ 2016-02-17

Social Computing and Big Data Analytics (社群運算 與 大數據分析)

淡江大學104學年度第2學期 課程教學計畫表 Spring 2016 (2016.02 - 2016.06) 課程名稱:社群運算與大數據分析 (Social Computing and Big Data Analytics) 授課教師:戴敏育 (Min-Yuh Day) 開課系級:資管所碩士班(TLMXM1A) 開課資料:選修 單學期 2 學分 (2 Credits, Elective) 上課時間:週三 8,9 (Wed 15:10-17:00) 上課教室: Q201 (傳播館)

課程簡介 本課程介紹社群運算與大數據分析的基本概念及研究議題。 課程內容包括 資料科學與大數據分析:探索、分析、視覺化與呈現資料 大數據基礎:MapReduce典範、Hadoop與Spark生態系統 大數據處理平台SMACK: Spark, Mesos, Akka, Cassandra and Kafka Python Pandas財務大數據分析 文字探勘分析技術與自然語言處理 社群媒體行銷分析 深度學習 (Deep Learning) 社群媒體情感分析 Google TensorFlow 深度學習 (Deep Learning with Google TensorFlow) 社會網絡分析、量測、工具

Course Introduction This course introduces the fundamental concepts and research issues of social computing and big data analytics. Topics include Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data Fundamental Big Data: MapReduce Paradigm, Hadoop and Spark Ecosystem Big Data Processing Platforms with SMACK: Spark, Mesos, Akka, Cassandra and Kafka Big Data Analytics with Numpy in Python Finance Big Data Analytics with Pandas in Python Text Mining Techniques and Natural Language Processing Social Media Marketing Analytics Deep Learning with Theano and Keras in Python Deep Learning with Google TensorFlow Sentiment Analysis on Social Media with Deep Learning Social Network Analysis, Measurements, and Tools

課程目標 (Objective) 瞭解及應用社群運算與大數據分析基本概念與研究議題。 (Understand and apply the fundamental concepts and research issues of Social Computing and Big Data Analytics.) 進行社群運算與大數據分析相關之資訊管理研究。 (Conduct information systems research in the context of Social Computing and Big Data Analytics.)

課程大綱 (Syllabus) 週次 (Week) 日期 (Date) 內容 (Subject/Topics) 1 2016/02/17 Course Orientation for Social Computing and Big Data Analytics (社群運算與大數據分析課程介紹) 2 2016/02/24 Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data (資料科學與大數據分析: 探索、分析、視覺化與呈現資料) 3 2016/03/02 Fundamental Big Data: MapReduce Paradigm, Hadoop and Spark Ecosystem (大數據基礎:MapReduce典範、 Hadoop與Spark生態系統)

課程大綱 (Syllabus) 週次 (Week) 日期 (Date) 內容 (Subject/Topics) 4 2016/03/09 Big Data Processing Platforms with SMACK: Spark, Mesos, Akka, Cassandra and Kafka (大數據處理平台SMACK: Spark, Mesos, Akka, Cassandra, Kafka) 5 2016/03/16 Big Data Analytics with Numpy in Python (Python Numpy 大數據分析) 6 2016/03/23 Finance Big Data Analytics with Pandas in Python (Python Pandas 財務大數據分析) 7 2016/03/30 Text Mining Techniques and Natural Language Processing (文字探勘分析技術與自然語言處理) 8 2016/04/06 Off-campus study (教學行政觀摩日)

課程大綱 (Syllabus) 週次 (Week) 日期 (Date) 內容 (Subject/Topics) 9 2016/04/13 Social Media Marketing Analytics (社群媒體行銷分析) 10 2016/04/20 期中報告 (Midterm Project Report) 11 2016/04/27 Deep Learning with Theano and Keras in Python (Python Theano 和 Keras 深度學習) 12 2016/05/04 Deep Learning with Google TensorFlow (Google TensorFlow 深度學習) 13 2016/05/11 Sentiment Analysis on Social Media with Deep Learning (深度學習社群媒體情感分析)

課程大綱 (Syllabus) 週次 (Week) 日期 (Date) 內容 (Subject/Topics) 14 2016/05/18 Social Network Analysis (社會網絡分析) 15 2016/05/25 Measurements of Social Network (社會網絡量測) 16 2016/06/01 Tools of Social Network Analysis (社會網絡分析工具) 17 2016/06/08 Final Project Presentation I (期末報告 I) 18 2016/06/15 Final Project Presentation II (期末報告 II)

2016/02/24 Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data (資料科學與大數據分析: 探索、分析、 視覺化與呈現資料)

2016/03/02 Fundamental Big Data: MapReduce Paradigm, Hadoop and Spark Ecosystem (大數據基礎: MapReduce典範、 Hadoop與Spark生態系統)

2016/03/09 Big Data Processing Platforms with SMACK: Spark, Mesos, Akka, Cassandra and Kafka (大數據處理平台SMACK: Spark, Mesos, Akka, Cassandra, Kafka)

2016/03/23 Finance Big Data Analytics with Pandas in Python (Python Pandas 財務大數據分析)

2016/04/27 Deep Learning with Theano and Keras in Python (Python Theano 和 Keras 深度學習)

2016/05/04 Deep Learning with Google TensorFlow (Google TensorFlow 深度學習)

教學方法與評量方法 教學方法 講述、討論、賞析、模擬、問題解決 評量方法 實作、報告、上課表現

教材課本 教材課本 講義 (Slides) 社群運算與大數據分析相關個案與論文 (Cases and Papers related to Social Computing and Big Data Analytics)

參考書籍 EMC Education Services, Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, Wiley, 2015 Mohammed Guller, Big Data Analytics with Spark: A Practitioner's Guide to Using Spark for Large Scale Data Analysis, Apress, 2015 Nick Pentreath, Machine Learning with Spark - Tackle Big Data with Powerful Spark Machine Learning Algorithms, Packt Publishing, 2015 Wes McKinney, Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, O'Reilly Media, 2012 Michael Heydt , Mastering Pandas for Finance, Packt Publishing, 2015 Michael Heydt, Learning Pandas - Python Data Discovery and Analysis Made Easy, Packt Publishing, 2015 Yves Hilpisch, Derivatives Analytics with Python: Data Analysis, Models, Simulation, Calibration and Hedging, Wiley, 2015 Yves Hilpisch, Python for Finance: Analyze Big Financial Data, O'Reilly Media, 2014 James Ma Weiming, Mastering Python for Finance, Packt Publishing, 2015 Fabio Nelli, Python Data Analytics: Data Analysis and Science using PANDAs, matplotlib and the Python Programming Language, Apress, 2015

作業與學期成績計算方式 作業篇數 學期成績計算方式 3篇 期中評量:30 % 期末評量:30 % 期末評量:30 % 其他(課堂參與及報告討論表現): 40 %

Team Term Project Term Project Topics 3-4 人為一組 Big Data Analytics Social Computing Big Data mining Web and Text mining Business Intelligence 3-4 人為一組 分組名單於 2016/02/24 (三) 課程下課時繳交 由班代統一收集協調分組名單

Social Computing and Big Data Analytics (社群運算 與 大數據分析)

EMC Education Services, Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, Wiley, 2015 Source: http://www.amazon.com/Data-Science-Big-Analytics-Discovering/dp/111887613X

Mohammed Guller, Big Data Analytics with Spark: A Practitioner's Guide to Using Spark for Large Scale Data Analysis, Apress, 2015 Source: http://www.amazon.com/Big-Data-Analytics-Spark-Practitioners/dp/1484209656

Nick Pentreath, Machine Learning with Spark – Tackle Big Data with Powerful Spark Machine Learning Algorithms, Packt Publishing, 2015 Source: http://www.amazon.com/Machine-Learning-Spark-Powerful-Algorithms/dp/1783288515

Yves Hilpisch, Python for Finance: Analyze Big Financial Data, O'Reilly, 2014 Source: http://www.amazon.com/Python-Finance-Analyze-Financial-Data/dp/1491945281

Michael Heydt , Mastering Pandas for Finance, Packt Publishing, 2015 Source: http://www.amazon.com/Mastering-Pandas-Finance-Michael-Heydt/dp/1783985100

Business Insights with Social Analytics

Analyzing the Social Web: Social Network Analysis

Jennifer Golbeck (2013), Analyzing the Social Web, Morgan Kaufmann Source: http://www.amazon.com/Analyzing-Social-Web-Jennifer-Golbeck/dp/0124055311

Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites Source: http://www.amazon.com/Mining-Social-Web-Analyzing-Facebook/dp/1449388345

Web Mining Success Stories Amazon.com, Ask.com, Scholastic.com, … Website Optimization Ecosystem Source: Turban et al. (2011), Decision Support and Business Intelligence Systems

Big Data Analytics and Data Mining

Source: http://www.amazon.com/gp/product/1466568704 Stephan Kudyba (2014), Big Data, Mining, and Analytics: Components of Strategic Decision Making, Auerbach Publications Source: http://www.amazon.com/gp/product/1466568704

Architecture of Big Data Analytics Big Data Analytics Applications Big Data Sources Big Data Transformation Big Data Platforms & Tools * Internal * External * Multiple formats * Multiple locations * Multiple applications Middleware Hadoop MapReduce Pig Hive Jaql Zookeeper Hbase Cassandra Oozie Avro Mahout Others Queries Transformed Data Big Data Analytics Raw Data Extract Transform Load Reports Data Warehouse OLAP Traditional Format CSV, Tables Data Mining Source: Stephan Kudyba (2014), Big Data, Mining, and Analytics: Components of Strategic Decision Making, Auerbach Publications

Architecture of Big Data Analytics Big Data Analytics Applications Big Data Sources Big Data Transformation Big Data Platforms & Tools * Internal * External * Multiple formats * Multiple locations * Multiple applications Data Mining Big Data Analytics Applications Middleware Hadoop MapReduce Pig Hive Jaql Zookeeper Hbase Cassandra Oozie Avro Mahout Others Queries Transformed Data Big Data Analytics Raw Data Extract Transform Load Reports Data Warehouse OLAP Traditional Format CSV, Tables Data Mining Source: Stephan Kudyba (2014), Big Data, Mining, and Analytics: Components of Strategic Decision Making, Auerbach Publications

Social Big Data Mining (Hiroshi Ishikawa, 2015) Source: http://www.amazon.com/Social-Data-Mining-Hiroshi-Ishikawa/dp/149871093X

Architecture for Social Big Data Mining (Hiroshi Ishikawa, 2015) Enabling Technologies Analysts Integrated analysis Model Construction Explanation by Model Integrated analysis model Conceptual Layer Construction and confirmation of individual hypothesis Description and execution of application-specific task Natural Language Processing Information Extraction Anomaly Detection Discovery of relationships among heterogeneous data Large-scale visualization Data Mining Application specific task Multivariate analysis Logical Layer Parallel distrusted processing Social Data Software Hardware Physical Layer Source: Hiroshi Ishikawa (2015), Social Big Data Mining, CRC Press

Business Intelligence (BI) Infrastructure Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Data Warehouse Data Mining and Business Intelligence Increasing potential to support business decisions End User Decision Making Data Presentation Business Analyst Visualization Techniques Data Mining Data Analyst Information Discovery Data Exploration Statistical Summary, Querying, and Reporting Data Preprocessing/Integration, Data Warehouses DBA Data Sources Paper, Files, Web documents, Scientific experiments, Database Systems Source: Jiawei Han and Micheline Kamber (2006), Data Mining: Concepts and Techniques, Second Edition, Elsevier

The Evolution of BI Capabilities Source: Turban et al. (2011), Decision Support and Business Intelligence Systems

Source: http://www. amazon

Deep Learning Intelligence from Big Data Source: https://www.vlab.org/events/deep-learning/

Source: http://www. amazon

Source: http://www. amazon

Source: https://www. thalesgroup

Big Data with Hadoop Architecture Source: https://software.intel.com/sites/default/files/article/402274/etl-big-data-with-hadoop.pdf

Big Data with Hadoop Architecture Logical Architecture Processing: MapReduce Source: https://software.intel.com/sites/default/files/article/402274/etl-big-data-with-hadoop.pdf

Big Data with Hadoop Architecture Logical Architecture Storage: HDFS Source: https://software.intel.com/sites/default/files/article/402274/etl-big-data-with-hadoop.pdf

Big Data with Hadoop Architecture Process Flow Source: https://software.intel.com/sites/default/files/article/402274/etl-big-data-with-hadoop.pdf

Big Data with Hadoop Architecture Hadoop Cluster Source: https://software.intel.com/sites/default/files/article/402274/etl-big-data-with-hadoop.pdf

Traditional ETL Architecture Source: https://software.intel.com/sites/default/files/article/402274/etl-big-data-with-hadoop.pdf

Offload ETL with Hadoop (Big Data Architecture) Source: https://software.intel.com/sites/default/files/article/402274/etl-big-data-with-hadoop.pdf

Source: http://www.newera-technologies.com/big-data-solution.html Big Data Solution Source: http://www.newera-technologies.com/big-data-solution.html

HDP A Complete Enterprise Hadoop Data Platform Source: http://hortonworks.com/hdp/

Spark and Hadoop Source: http://spark.apache.org/

Spark Ecosystem Source: http://spark.apache.org/

Python for Big Data Analytics (The column on the left is the 2015 ranking; the column on the right is the 2014 ranking for comparison 2015 2014 Source: http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages

Source: http://www. kdnuggets

Business Intelligence Trends Agile Information Management (IM) Cloud Business Intelligence (BI) Mobile Business Intelligence (BI) Analytics Big Data Source: http://www.businessspectator.com.au/article/2013/1/22/technology/five-business-intelligence-trends-2013

Business Intelligence Trends: Computing and Service Cloud Computing and Service Mobile Computing and Service Social Computing and Service

Business Intelligence and Analytics Business Intelligence 2.0 (BI 2.0) Web Intelligence Web Analytics Web 2.0 Social Networking and Microblogging sites Data Trends Big Data Platform Technology Trends Cloud computing platform Source: Lim, E. P., Chen, H., & Chen, G. (2013). Business Intelligence and Analytics: Research Directions.  ACM Transactions on Management Information Systems (TMIS), 3(4), 17

Business Intelligence and Analytics: Research Directions 1. Big Data Analytics Data analytics using Hadoop / MapReduce framework 2. Text Analytics From Information Extraction to Question Answering From Sentiment Analysis to Opinion Mining 3. Network Analysis Link mining Community Detection Social Recommendation Source: Lim, E. P., Chen, H., & Chen, G. (2013). Business Intelligence and Analytics: Research Directions.  ACM Transactions on Management Information Systems (TMIS), 3(4), 17

Source: Davenport, T. H. , & Patil, D. J. (2012). Data Scientist Source: Davenport, T. H., & Patil, D. J. (2012). Data Scientist. Harvard business review

SAS第五屆大數據資料科學家競賽 文字分析與數位行銷大賽 http://saschampion.com.tw/

SAS第五屆大數據資料科學家競賽 文字分析與數位行銷大賽 http://saschampion.com.tw/

Summary This course introduces the fundamental concepts and research issues of social computing and big data analytics. Topics include Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data Fundamental Big Data: MapReduce Paradigm, Hadoop and Spark Ecosystem Big Data Processing Platforms with SMACK: Spark, Mesos, Akka, Cassandra and Kafka Big Data Analytics with Numpy in Python Finance Big Data Analytics with Pandas in Python Text Mining Techniques and Natural Language Processing Social Media Marketing Analytics Deep Learning with Theano and Keras in Python Deep Learning with Google TensorFlow Sentiment Analysis on Social Media with Deep Learning Social Network Analysis, Measurements, and Tools

Contact Information 戴敏育 博士 (Min-Yuh Day, Ph.D.) 專任助理教授 淡江大學 資訊管理學系 電話:02-26215656 #2846 傳真:02-26209737 研究室:B929 地址: 25137 新北市淡水區英專路151號 Email: myday@mail.tku.edu.tw 網址:http://mail.tku.edu.tw/myday/