Localization of the scalar and fermionic eigenmodes and confinement J. Greensite, F.V. Gubarev, A.V.Kovalenko, S.M. Morozov, S. Olejnik, MIP, S.V. Syritsyn,

Slides:



Advertisements
Similar presentations
Štefan Olejník Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia Simple (approximate) YM vacuum wave-functional in 2+1 dimensions.
Advertisements

Lecture 1: basics of lattice QCD Peter Petreczky Lattice regularization and gauge symmetry : Wilson gauge action, fermion doubling Different fermion formulations.
Toward M5-branes from ABJM action Based on going project with Seiji Terashima (YITP, Kyoto U. ) Futoshi Yagi (YITP, Kyoto U.)
N =1 2+1 NCSYM & Supermembrane with Central Charges. Lyonell Boulton, M.P. Garcia del Moral, Alvaro Restuccia Hep-th/ TORINO U. & POLITECNICO TORINO.
Large Nc Gauge Theories on the lattice Rajamani Narayanan Florida International University Rajamani Narayanan August 10, 2011.
A). Introduction b). Quenched calculations c). Calculations with 2 light dynamical quarks d). (2+1) QCD LATTICE QCD SIMULATIONS, SOME RECENT RESULTS (END.
Charm 2006, page 1 Pentaquark Baryons and Tetraquark Mesoniums from Lattice QCD Hadron Calculation with overlap fermion Pentaquark Baryons and Tetraquark.
P. Vranas, IBM Watson Research Lab 1 Gap domain wall fermions P. Vranas IBM Watson Research Lab.
1 Peskin Takeuchi S-parameter on 2+1QCD DW lattices y  Estimates for “technicolor” are base on scaling fromQCD.  (Modest) goal: Evaluate S for QCD (or.
Štefan Olejník Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia Coulomb energy, remnant symmetry in Coulomb gauge, and phases of.
1 Meson correlators of two-flavor QCD in the epsilon-regime Hidenori Fukaya (RIKEN) with S.Aoki, S.Hashimoto, T.Kaneko, H.Matsufuru, J.Noaki, K.Ogawa,
Lattice QCD (INTRODUCTION) DUBNA WINTER SCHOOL 1-2 FEBRUARY 2005.
Role of Anderson localization in the QCD phase transitions Antonio M. García-García Princeton University ICTP, Trieste We investigate.
Strong Magnetic Fields in QCD Lattice Calculations P.V.Buividovich ( ITEP, JINR ) ‏, M.N.Chernodub (LMPT, Tours University, ITEP) ‏, E.V.Luschevskaya (ITEP,
Towards θvacuum simulation in lattice QCD Hidenori Fukaya YITP, Kyoto Univ. Collaboration with S.Hashimoto (KEK), T.Hirohashi (Kyoto Univ.), K.Ogawa(Sokendai),
M. Zubkov ITEP Moscow Tev monopoles and topology of the Standard Model.
QGP and Confinement XQCD 2010 Wilhelm and Else Heraeus Seminar Bad Honnef, June X-QCD Japan (S.Motoki, K.Nagata, Y.Nakagawa, A. Nakamura and T.Saito)
Entanglement in Quantum Critical Phenomena, Holography and Gravity Dmitri V. Fursaev Joint Institute for Nuclear Research Dubna, RUSSIA Banff, July 31,
Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Excited Hadrons: Lattice results Christian B. Lang Inst. F. Physik – FB Theoretische Physik Universität Graz Oberwölz, September 2006 B ern G raz R egensburg.
Lattice 07, Regensburg, 1 Magnetic Moment of Vector Mesons in Background Field Method Structure of vector mesons Background field method Some results x.
Heavy quark potential and running coupling in QCD W. Schleifenbaum Advisor: H. Reinhardt University of Tübingen EUROGRADworkshop Todtmoos 2007.
Color confinement mechanism and the type of the QCD vacuum Tsuneo Suzuki (Kanazawa Univ.) Collaborators: K.Ishiguro, Y.Mori, Y.Nakamura, T.Sekido ( M.Polikarpov,
Takayuki Nagashima Tokyo Institute of Technology In collaboration with M.Eto (Pisa U.), T.Fujimori (TIT), M.Nitta (Keio U.), K.Ohashi (Cambridge U.) and.
The LHC Rap (Large Hadron Collider). Lattice QCD in the Era of the Large Hadron Collider Anna Hasenfratz University of Colorado, Boulder University of.
INSTANTON AND ITS APPLICATION Nam, Seung-il Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Japan YITP, Kyoto University YITP Lunch.
1 Thermodynamics of two-flavor lattice QCD with an improved Wilson quark action at non-zero temperature and density Yu Maezawa (Univ. of Tokyo) In collaboration.
Guido Cossu 高エネルギ加速器研究機構 Lattice Hosotani mechanism on the lattice o Introduction o EW symmetry breaking mechanisms o Hosotani mechanism.
Štefan Olejník Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia Eigenmodes of covariant Laplacians in SU(2) lattice gauge theory:
Finite Density with Canonical Ensemble and the Sign Problem Finite Density Algorithm with Canonical Ensemble Approach Finite Density Algorithm with Canonical.
A direct relation between confinement and chiral symmetry breaking in temporally odd-number lattice QCD Lattice 2013 July 29, 2013, Mainz Takahiro Doi.
Non-commutative model of quark interactions V.V. Khruschov (Kurchatov Institute) The talk on the International Conference “New Trends in High-Energy Physics”,
Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen C. Feuchter & H. R. hep-th/ , PRD70 hep-th/ , PRD71 hep-th/ D. Epple, C. Feuchter,
Confinement mechanism and topological defects Review+ papers by A.V.Kovalenko, MIP, S.V. Syritsyn, V.I. Zakharov hep-lat/ , hep-lat/ , hep-lat/
Lattice Fermion with Chiral Chemical Potential NTFL workshop, Feb. 17, 2012 Arata Yamamoto (University of Tokyo) AY, Phys. Rev. Lett. 107, (2011)
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
Condensates and topology fixing action Hidenori Fukaya YITP, Kyoto Univ. Collaboration with T.Onogi (YITP) hep-lat/
Lattice studies of topologically nontrivial non-Abelian gauge field configurations in an external magnetic field in an external magnetic field P. V. Buividovich.
Instanton-induced contributions to hadronic form factors. Pietro Faccioli Universita’ degli Studi di Trento, I.N.F.N., Gruppo Collegato di Trento, E.C.T.*
1 Approaching the chiral limit in lattice QCD Hidenori Fukaya (RIKEN Wako) for JLQCD collaboration Ph.D. thesis [hep-lat/ ], JLQCD collaboration,Phys.Rev.D74:094505(2006)[hep-
Hamiltonian approach to Yang-Mills Theory in Coulomb gauge H. Reinhardt Tübingen Collaborators: G. Burgio, M.Quandt, P. Watson D. Epple, C. Feuchter, W.
Chiral Dynamics Workshop, JLAB, Aug. 6-10, 2012
@ Brookhaven National Laboratory April 2008 Spectral Functions of One, Two, and Three Quark Operators in the Quark-Gluon Plasma Masayuki ASAKAWA Department.
Pion mass difference from vacuum polarization E. Shintani, H. Fukaya, S. Hashimoto, J. Noaki, T. Onogi, N. Yamada (for JLQCD Collaboration) December 5,
Study of chemical potential effects on hadron mass by lattice QCD Pushkina Irina* Hadron Physics & Lattice QCD, Japan 2004 Three main points What do we.
Why Extra Dimensions on the Lattice? Philippe de Forcrand ETH Zurich & CERN Extra Dimensions on the Lattice, Osaka, March 2013.
1 Lattice Quantum Chromodynamics 1- Literature : Lattice QCD, C. Davis Hep-ph/ Burcham and Jobes By Leila Joulaeizadeh 19 Oct
MEM Analysis of Glueball Correlators at T>0 speaker Noriyoshi ISHII (RIKEN, Japan) in collaboration with Hideo SUGANUMA (TITECH, Japan) START.
Chiral symmetry breaking and Chiral Magnetic Effect in QCD with very strong magnetic field P.V.Buividovich (ITEP, Moscow, Russia and JIPNR “Sosny” Minsk,
Emergence of space, general relativity and gauge theory from tensor models Naoki Sasakura Yukawa Institute for Theoretical Physics.
Lattice 2006 Tucson, AZT.Umeda (BNL)1 QCD thermodynamics with N f =2+1 near the continuum limit at realistic quark masses Takashi Umeda (BNL) for the RBC.
알기 쉬운 초끈 이론 박 재모 (Postech). Outline 1. Partcle physics 2. Black holes 3. String theory 4. M theory 5. D branes 6. Gauge/Gravity theory correspondence.
Localized Eigenmodes of the Covariant Lattice Laplacian Stefan Olejnik, Mikhail Polikarpov, Sergey Syritsyn, Valentin Zakharov and J.G. “Understanding.
Precision Charmed Meson Spectroscopy and Decay Constants from Chiral Fermions Overlap Fermion on 2+1 flavor Domain Wall Fermion Configurations Overlap.
Quarks Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) Tokyo Univ., Sep. 27, 2007 Lattice Study of F. Karsch and M.K., arXiv:
Fermionic Schwinger current in 4-d de Sitter spacetime Takahiro Hayashinaka (RESCEU, Univ. Tokyo) Work in preparation with : Tomohiro Fujita (Stanford),
Gauge independence of Abelian dual Meissner effect in pure SU(2) QCD Katsuya Ishiguro Y.Mori, T.Sekido, T.Suzuki Kanazawa-univ & RIKEN Joint Meeting of.
QCD on Teraflops computerT.Umeda (BNL)1 QCD thermodynamics on QCDOC and APEnext supercomputers QCD thermodynamics on QCDOC and APEnext supercomputers Takashi.
Tigran Kalaydzhyan Spring School on Superstring Theory and Related Topics 28 March - 05 April The Abdus Salam International Centre for Theoretical.
Study of the structure of the QCD vacuum
Neutron Electric Dipole Moment at Fixed Topology
Nc=2 lattice gauge theories with
Speaker: Takahiro Doi (Kyoto University)
Condensate enhancement for mass generation in SU(3) gauge theory
Study of Aoki phase in Nc=2 gauge theories
Neutron EDM with external electric field
IR fixed points and conformal window in SU(3) gauge Theories
with Erich Poppitz (u of Toronto)
Jun Nishimura (KEK, SOKENDAI) JLQCD Collaboration:
Presentation transcript:

Localization of the scalar and fermionic eigenmodes and confinement J. Greensite, F.V. Gubarev, A.V.Kovalenko, S.M. Morozov, S. Olejnik, MIP, S.V. Syritsyn, V.I. Zakharov hep-lat/ , hep-lat/ Workshop on Computational Hadron Physics, Hadron Physics I3 Topical Workshop, Cyprus, September 14-17, 2005

Anderson localization in 3D E > E cr (mobility edge) IPR is small

Anderson localization in 3D E < E cr (mobility edge) IPR is large

Eigenmodes localization is characterized by IPR B.Kramer, A.MacKinnon (1993); C.Gattringer et al. (2001); T.Kovacs (2003); C. Aubin et al. [MILC Collaboration] (2004), J.Greensite et al. (2005) F. Bruckmann, E.-M. Ilgenfritz (2005) (Solid state physics, lattice fermions and bosons). Talks at Lattice 2005: N.Cundy, T.De Grand, C.Gattringer, J.Greensite, J.Hetrick, I.Horvath, Y.Koma, S.Solbrig,B.Svetitsky, S.Syritsyn, M.I.P. F. BruckmannE.-M. Ilgenfritz By definition the inverse participation ratio (IPR) is:

IPR EXAMPLES

Scalars fundamental representation (j=1/2) SU(2) lattice gluodynamics

is constant in physical units Scalars (j=1/2) SCALING

P. de Forcrand and M. D'Elia, Phys.Rev.Lett. 82 (1999) 4582 Removing center vortices we get zero string tension and zero quark condensate Z(2) gauge fixing

IPR for full and vortex removed gauge field configurations for SU(2) lattice gluodynamics (fundamental Laplasian, j=1/2) Confinement is similar to Anderson localization?

IPR for large enough l is small ?mobility edge?

Visualization of localization IPR=52IPR=1.9 Time slices, intensity of color is proportional to

Fermions overlap Dirac operator, SU(2) gluodynamics Overlap computer code was given to ITEP group by G. Schierholz and T. Streuer

IPR for overlap lattice fermions before and after removing center vortices Confinement and chiral condensate disappears after removing center vortices (P. de Forcrand and M. d’Ellia (1999); J. Gattnar et al. (2005), what happens with localization?

IPR for various lattice spacings something happens at 150Mev< l <200Mev for all lattice spacings

Localization volume IPR vs volumeIPR vs lattice spacing, V=const

Time slices for IPR=5.13 chirality=-1 IPR=1.45 chirality=0

Localization properties of overlap fermions and scalars (fundamental representation, j=1/2) are qualitatively (not quantitatively ) similar

Scalars adjoint (j=1) and j=3/2 representation SU(2) lattice gluodynamics

Adjoint localization volume d=2? No! Additional analysis (hep-lat/ ) show that adjoint localization volume is 4d, but shrinks to zero in the continuum limit fundamental adjoint

j=3/2 representation Or very strong localization (d=0) or localization volume very fast shrinks to zero when a t 0

Low dimensional structures in lattice gluodynamics 1. I. Horvath et al. hep-lat/ , hep-lat/ , Phys.Rev.D68:114505,2003 I. Horvath I. Horvath 2. MILC collaboration hep-lat/

Summary 1. Localization of eigenfunctions of the Laplacian and Dirac operator is a manifestation of the possible existence of low dimentional objects in the QCD vacuum. 2. The density of the states is in physical units, while the localization volume of the modes tends to zero in physical units “Fine tuning phenomenon” hep-lat/

Appendix

Removing center vortices Confinement and chiral condensate disappears after removing center vortices (P. de Forcrand and M. d’Ellia (1999); J. Gattnar et al. (2005), what happens with localization? Topological charge disappears

Quark condensate Result is in agreement with S.J.Hands and M.Teper (1990), (Wilson fermions) Banks-Casher (1980)

The action of monopoles and center vortices is singular, they exist due to energy-entropy balance (the entropy of lines and surfaces is also singular) Monopoles Center vortices 3D volumes

Length of IR monopole cluster scales, Length of IR monopole cluster scales,

Monopoles have fine tuned action density: Monopoles have fine tuned action density:

P-VORTEX density, Area/(6*V 4 ), scales: P-VORTEX density, Area/(6*V 4 ), scales:

Minimal 3D Volumes bounded by P-vortices scale

P-VORTEX has UV divergent action density: (S-S vac )=Const./ a 2 In lattice units

Monopoles belong to surfaces (center vortices). Monopoles belong to surfaces (center vortices). Surfaces are bounds of minimal 3d volumes in Z(2) Landau gauge 3D analogue: center vortex Minimal 3d volume corresponds to minimal surface spanned on center vortex monopole 3d volume