Millimeter Observations of the  Pic and AU Mic Debris Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics NASA/JPL-Caltech/T. Pyle S.Andrews,

Slides:



Advertisements
Similar presentations
Spitzer IRS Spectroscopy of IRAS-Discovered Debris Disks Christine H. Chen (NOAO) IRS Disks Team astro-ph/
Advertisements

Resonant Structures due to Planets Mark Wyatt UK Astronomy Technology Centre Royal Observatory Edinburgh.
Signatures of Planets in Debris Disks A. Moro-Martin 1,2,3, S. Wolf 2, R. Malhotra 4 & G. Rieke 1 1. Steward Observatory (University of Arizona); 2. MPIA.
Is there evidence of planets in debris disks? Mark Wyatt Institute of Astronomy University of Cambridge La planètmania frappe les astronomes Kalas, P.
1 Debris Disk Studies with CCAT D. Dowell, J. Carpenter, H. Yorke 2005 October 11.
Portrait of a Forming Massive Protocluster: NGC6334 I(N) Todd Hunter (NRAO/North American ALMA Science Center) Collaborators: Crystal Brogan (NRAO) Ken.
Surface Density Structure in Outer Region of Protoplanetary Disk Jul. 24th 2014 Nobeyama UM Eiji Akiyama (NAOJ) Munetake Momose, Yoshimi Kitamura, Takashi.
SMA Observations of the Herbig Ae star AB Aur Nagayoshi Ohashi (ASIAA) Main Collaborators: S.-Y. Lin 1, J. Lim 2, P. Ho 3, M. Momose 4, M. Fukagawa 5 (1.
Ge/Ay133 SED studies of disk “lifetimes” & Long wavelength studies of disks.
Spitzer Space Telescope Observations of the Fomalhaut Debris Disk Michael Werner, Karl Stapelfeldt, Chas Beichman (JPL); Kate Su, George Rieke, John Stansberry,
Constraining TW Hydra Disk Properties Chunhua Qi Harvard-Smithsonian Center for Astrophysics Collaborators : D.J. Wilner, P.T.P. Ho, T.L. Bourke, N. Calvet.
Structure of circumstellar envelope around AGB and post-AGB stars Dinh-V-Trung Sun Kwok, P.J. Chiu, M.Y. Wang, S. Muller, A. Lo, N. Hirano, M. Mariappan,
Comparison of Photometric And Spectroscopic Redshifts.
+ Current efforts for modeling exozodiacal disks Jean-Charles Augereau & Olivier Absil LAOG, Grenoble, France & U. Liège, Belgium Barcelona, September.
Nov PALM 3000 Requirements Review Imaging of Protoplanetary and Debris Disks Karl Stapelfeldt Jet Propulsion Laboratory.
Variable SiO Maser Emission from V838 Mon Mark Claussen May 16, 2006 Nature of V838 Mon and its Light Echo.
« Debris » discs A crash course in numerical methods Philippe Thébault Paris Observatory/Stockholm Observatory.
Planet Formation through Radio Eyes A. Meredith Hughes Wesleyan University Kevin Flaherty (Wesleyan), Amy Steele (Wesleyan), Jesse Lieman-Sifry (Wesleyan),
A New “Radio Era” for Planet Forming Disks K. Teramura UH IfA David J. Wilner Harvard-Smithsonian Center for Astrophysics thanks to S. Andrews, C. Qi,
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
A new class of warm debris disks? Rachel Smith, Institute for Astronomy; Mark Wyatt, Abstract.
Multiwavelength Continuum Survey of Protostellar Disks in Ophiuchus Left: Submillimeter Array (SMA) aperture synthesis images of 870 μm (350 GHz) continuum.
Decoding Dusty Debris Disks AAAS, Februrary 2014 David J Wilner Harvard-Smithsonian Center for Astrophysics.
Doug Johnstone: Former Associate Director JCMT, NRC Herzberg, Univ. Victoria JCMT: Debris Discs and Miscellaneous Sciences.
Is there evidence of planets in debris disks? Mark Wyatt Institute of Astronomy University of Cambridge La planètmania frappe les astronomes Kalas, P.
Debris Disk Imaging with HST/NICMOS: The GO/10177 Debris Disk Survey Part 2: The Resolved Disks GLENN SCHNEIDER NICMOS Project Steward Observatory 933.
Ralf Siebenmorgen MIR on ELT’s The Mid-infrared on ELT’s MIR recommended to be essential (3 – 25µm)
Peering into the Birthplaces of Solar Systems Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope.
Modeling Planetary Systems Around Sun-like Stars Paper: Formation and Evolution of Planetary Systems: Cold Outer Disks Associated with Sun-like Stars,
Building ALMA with “Equal” Partners Problems and Successes Paul Vanden Bout (NRAO) HEAD – March 2013.
Slide 1 (of 18) Circumstellar Disk Studies with the EVLA Carl Melis UCLA/LLNL In collaboration with: Gaspard Duchêne, Holly Maness, Patrick Palmer, and.
A Submillimeter View of Protoplanetary Disks Sean Andrews University of Hawaii Institute for Astronomy Jonathan Williams & Rita Mann, UH IfA David Wilner,
Radial Dust Migration in the TW Hydra protoplanetary disk Sarah Maddison (Swinburne) Christophe Pinte, François Ménard, Wing-Fai Thi (IPAG Grenoble), Eric.
October 20, 2005 Nearly Resolved Debris Disks STScI, Baltimore Hervé Beust Laboratoire d’Astrophysique de Grenoble, France FOST group The origin of the.
A-Ran Lyo KASI (Korea Astronomy and Space Science Institute) Nagayoshi Ohashi, Charlie Qi, David J. Wilner, and Yu-Nung Su Transitional disk system of.
ALMA Timeline  Design and Development Phase Jun Dec 2001  International partnership established 1999  Prototype antenna contract Dec 99  ALMA/NA.
Radial Dust Migration in the TW Hydra protoplanetary disk Sarah Maddison (Swinburne) Christophe Pinte, François Ménard, Wing-Fai Thi (IPAG Grenoble), Eric.
October 27, 2006US SKA, CfA1 The Square Kilometer Array and the “Cradle of Life” David Wilner (CfA)
1 Grain Growth in Protoplanetary Disks: the (Sub)Millimeter Sep 11, 2006 From Dust to Planetesimals, Ringberg David J. Wilner Harvard-Smithsonian Center.
ALMA Observations of proto-planetary disks I HD – P.I. Casassus 2013 Nature 493, 191 Herbig Ae star 140 pc, 2 Myr, 1.9 M , disk mass 0.1 M  Left:
The AU Mic Debris Ring Density profiles & Dust Dynamics J.-C. Augereau & H. Beust Grenoble Observatory (LAOG)
Occultation Studies of the Outer Solar System B. Scott Gaudi (Harvard-Smithsonian Center for Astrophysics)
New Views of Planet-Forming Disks Radio Imaging from SMA to ALMA David J. Wilner Harvard-Smithsonian Center for Astrophysics K. Teramura UH IfA Wesleyan.
Early O-Type Stars in the W51-IRS2 Cluster A template to study the most massive (proto)stars Luis Zapata Max Planck Institut für Radioastronomie, GERMANY.
IV. Radiative Transfer Models The radiative transfer modeling procedure is the same procedure used in Shirley et al. (2002) except that the visibility.
Gaspard Duchêne UC Berkeley & Obs. Grenoble From circumstellar disks to planetary systems – Garching – Nov
Ge/Ay133 Can we study extrasolar Kuiper Belts?  Pic, A5V star AU Mic, M1Ve star.
Submillimeter Observations of Debris Disks Wayne Holland UK Astronomy Technology Centre, Royal Observatory Edinburgh With Jane Greaves, Mark Wyatt, Bill.
High Dynamic Range Imaging and Spectroscopy of Circumstellar Disks Alycia Weinberger (Carnegie Institution of Washington) With lots of input from: Aki.
1 ALMA View of Dust Evolution: Making Planets and Decoding Debris David J. Wilner (CfA) Grain Growth  Protoplanets  Debris.
The Submillimeter Array 1 David J. Wilner
A Low Mass H 2 Component to the AU Microscopii Circumstellar Disk Kevin France – CITA/U Toronto Aki Roberge – GSFC Roxana Lupu – JHU Seth Redfield – U.
Protoplanetary and Debris Disks A. Meredith Hughes Wesleyan University.
Herschel images of Fomalhaut An extrasolar Kuiper belt at the height of its dynamical activity B. Acke, M. Min, C. Dominik, B. Vandenbussche, B. Sibthorpe,
Theoretical difficulties with standard models Mark Wyatt Institute of Astronomy, University of Cambridge.
Kate Su, George Rieke, Karl Misselt, John Stansberry, Amaya Moro-Martin, David Trilling… etc. (U. of A) Karl Stapelfeldt, Michael Werner (NASA JPL) Mark.
Grain Growth and Substructure in Protoplanetary Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics S. Corder (NRAO) A. Deller.
Observations of Bipolar planetary nebulae at 30 Micron Kentaro Asano (Univ.Tokyo) Takashi Miyata, Shigeyuki Sako, Takafumi Kamizuka, Tomohiko Nakamura,
Circumstellar Disks at 5-20 Myr: Observations of the Sco-Cen OB Association Marty Bitner.
Extended debris discs around nearby, Sun-like stars as a probe of disc-planet interactions Astronomical Society of Australia ASM 5th July 2016 Dr. Jonty.
ALMA User Perspective: Galactic Studies
Debris Disk Studies with CCAT
Young planetary systems
Gas! Very few debris disks have detected gas, and it is generally only found around the youngest systems. So why should we consider gas here?
ALMA does Circumstellar Disks
9-10 Aprile Osservatorio Astronomico di Capodimonte
Debris Discs in Binaries
Dynamical trapping (pile-up) of grains near the sublimation radius
Ge/Ay133 Can we study extrasolar Kuiper Belts?
Probing CO freeze-out and desorption in protoplanetary disks
Presentation transcript:

Millimeter Observations of the  Pic and AU Mic Debris Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics NASA/JPL-Caltech/T. Pyle S.Andrews, M. MacGregor, K. Rosenfeld (Harvard-Smithsonian CfA) A.M. Hughes, E. Chiang, P. Kalas, J. Graham (U.C. Berkeley) B. Matthews, M. Booth (HIA), G. Kennedy (IoA), B. Sibthorpe (SRON) New Trends in Radio Astronomy in the ALMA Era, 2012 Dec 5, Hakone

Sister Stars with Edge-on Debris Disks  Pic A6 type 19.4 pc R disk > 800 AU AU Mic M1 type 9.9 pc R disk > 200 AU Kalas members of  Pic Moving Group (age ~12 Myr)

Scattered Light Midplane Profiles both disks show broken power-law profiles with similar slopes Liu 2004 Golimowski et al R -4 R -1 R -4  Pic break at R ~120 AU AU Mic break at R ~35 AU 3

The “Birth Ring” Paradigm assume a collisional ring of dust-producing planetesimals – small grains blown out by stellar radiation (  Pic) and stellar winds (AU Mic) – large grains stay close to birth ring – size-dependent dust dynamics explains scattered light profile  = F * /F grav Krivov 2010 (see Wyatt 2006) Strubbe & Chiang 2006 (also see Augereau & Beust 2006) 4 scattered light

SMA: 1.3 Millimeter Emission Belts Wilner et al  Pic contours: ±2,4,6,8 x 0.6 mJy Wilner et al AU Mic contours: ±2,4,6 x 0.4 mJy 5

Emission Models and Belt Locations  Pic R = 94±8 AU  R = AU F = 15±2 mJy -32 AU Mic R = AU  R = AU F = 8.2±1.2 mJy

AU Mic ALMA Cycle 0 Observations MacGregor et al. 2012, arXiv: >10x better sensitivity, >10x smaller beam area than SMA study S PI Wilner S PI Ertel 4 SB executions in 2012 April and June  = 1.3 mm (band 6) 16 to 20 antennas beam 0.8 x 0.7 arcsec (8 x 7 AU) rms = 30 μ Jy

Emission Model Fits 8 contours: ±4,8,12,.. x 30 μ Jy outer belt + central peak

Remarks on AU Mic Modeling central peak – photosphere + additional unresolved emission – stellar flares? no detectable variability, hours to months – stellar corona? low radio flux limits in quiescence – asteroid-like belt at a few AU? compatible with no excess < 25 μ m outer dust belt – extends to R=40 AU, to the break in scattered light profile – appears truncated, reminiscent of classical Kuiper Belt initial condition? or result of dynamical interaction? – rising surface density profile:  ~ r 2.8 inner collisional depletion? – no detectable asymmetries in structure or position offset limit compatible with presence of Uranus-like planet 9

Summary debris disks are governed by size dependent dust dynamics millimeter emission traces dust-producing planetesimals SMA reveals millimeter emission belts in  Pic and AU Mic disks at locations of “birth rings” predicted from scattered light profiles ALMA Cycle 0 AU Mic data already providing much more detail and showing surprises 10