The Formation & Evolution of Planetary Systems: Placing Our Solar System in Context Michael R. Meyer (Steward Observatory, The University of Arizona, P.I.) D. Backman (NASA-Ames, D.P.I.), S.V.W. Beckwith (STScI), J. Bouwman (MPIA), J.M. Carpenter (Caltech), M. Cohen (UC-Berkeley), U. Gorti (NASA- Ames), T. Henning (MPIA), L. Hillenbrand (Caltech, D.P.I.), D. Hines (Steward), D. Hollenbach (NASA-Ames), J. Lunine (LPL), J.S. Kim (Steward), R. Malhotra (LPL), E. Mamajek (Steward), A. Moro-Martin (Steward), P. Morris (SSC), J. Najita (NOAO), D. Padgett (SSC), I. Pascucci (MPIA), J. Rodmann (MPIA), M. Silverstone (Steward), D. Soderblom (STScI), J.R. Stauffer (SSC), B. Stobie (Steward), S. Strom (NOAO), D. Watson (Rochester), S. Weidenschilling (PSI), S. Wolf (MPIA), and E. Young (Steward). A Spitzer Legacy Science Program: Denver AAS Meeting June 1, 2004
From Protostellar Disks to Mature Planetary Systems
Questions to ponder... Is the transition from primordial to debris observable? » Changes in particle size, composition or geometry. Do gas disks survive beyond accretion phase? » If not, then ''transition time'' ~ P-R timescale. Does dust disk mass decrease as ~ t -2 ? » Compare to solar system collisional evolution. Can we infer planetary architectures from SED? » Placing our solar system in context.
NIR Excess Fraction (< 0.1 AU) vs. Cluster Age Haisch etal. 2001; see also Hillenbrand, Meyer, and Carpenter (2004). CAI Formation? Terrestrial Planets? Chrondrules?
Different Wavelengths Trace Different Radii!!
MIR Excess Fraction ( AU) vs. Cluster Age Mamajek, Meyer, Hinz, Hoffman, Cohen, & Hora, 2004, ApJ, in press. CAI Formation? Chrondrules? Terrestrial Planets? Dust in terrestrial planet zone becomes extremely optically- thin within 30 Myr.
SIRTF Legacy Science: The Formation and Evolution of Planetary Systems Formation of Planetary Embryos: »Characterize transition from primordial to debris disks. Growth of Gas Giant Planets: constrain timescale of gas disk dissipation. Mature Solar System Evolution: » examine the diversity of planetary systems. Our program builds on the heritage of IRAS and ISO.
Characterizing Planetary Systems: Our Dust Disk in Time Sample of 336 stars: Msun - 3 Myr to 3 Gyr - 15 < d < 150 pc
The Sample of Solar-Type (FGK) Stars: Age N * /N tot Distance (pc) Target
Dust Opacity: Effects of Size and Composition shown at R=100 (Henning et al. 2000)
Silicate Evolution in T Tauri Disks? Kessler, Hillenbrand, Blake, & Meyer, ApJ, submitted.
A. Moro-Martin, R. Malhotra (2002; 2003) Effects of Planets on Dust Distributions
Tracing the Evolution of the Gas: Geometry, Temperature, & Density Observations of warm H 2 gas will constrain time available to form gas giant planets Wavelength ( m)
Detecting Gas in Disks Gorti & Hollenbach Placing limits on lifetimes of gas disks that form giant planets.
FEPS First Results! Debris Disks Surrounding HD 105 and HD Meyer et al. (2004) ApJS Special Issue In press.
FEPS First Results! Debris Disks Surrounding HD 105 and HD Meyer et al. (2004) ApJS Special Issue In press Myr 45 to ??? AU ~1x10 -7 M sun Myr 20 to <100 AU ~6.9x10 -8 M sun
FEPS First Results! No lines detected for HD 105 Mass in H 2 < 4 M jup.
FEPS First Results! No Debris Disks Surrounding HD , HD , and HD Meyer et al. (2004) ApJS Special Issue In press. 1-3 Gyr <6.1x10 -8 M sun 1-3 Gyr <4.4x10 -8 M sun Myr <1.1x10 -7 M sun
The Formation & Evolution of Planetary Systems: Placing Our Solar System in Context For more information please visit or and watch for upcoming meetings including 2 nd TPF/Darwin Meeting, San Diego, CA July, 2004, & New Views of the Cosmos, Pasadena, CA November, 2004 Painting courtesy of William Hartman, Planetary Science Institute, Tucson, AZ.