Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041,

Slides:



Advertisements
Similar presentations
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Advertisements

Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,
CAVITY RING DOWN SPECTROSCOPY
Development of an External Cavity Quantum Cascade Laser for High- Resolution Spectroscopy of Molecular Ions JACOB T. STEWART, BRADLEY M. GIBSON, BENJAMIN.
Sub-Doppler Resolution Spectroscopy of the fundamental band of HCl with an Optical Frequency Comb ○ K. Iwakuni, M. Abe, and H. Sasada Department of Physics,
Tunable Laser Spectroscopy Referenced with Dual Frequency Combs International Symposium on Molecular Spectroscopy 2010 Fabrizio Giorgetta, Ian Coddington,
PRECISION CAVITY ENHANCED VELOCITY MODULATION SPECTROSCOPY Andrew A. Mills, Brian M. Siller, Benjamin J. McCall University of Illinois, Department of Chemistry.
Broadband Cavity Enhanced Absorption Spectroscopy With a Supercontinuum Source Paul S. Johnston Kevin K. Lehmann Departments of Chemistry & Physics University.
Dual-Comb Spectroscopy of C2H2, CH4 and H2O over 1.0 – 1.7 μm
Analysis of the 18 O 3 CRDS spectra in the 6000 – 7000 cm -1 spectral range : comparison with 16 O 3. Marie-Renée De Backer-Barilly, Alain Barbe, Vladimir.
Dual Wavelength Isotope Ratio FS-CRDS Thinh Q. Bui California Institute of Technology ISMS 2014.
Danielle Boddy Durham University – Atomic & Molecular Physics group Laser locking to hot atoms.
Ch 6: Optical Sources Variety of sources Variety of sources LS considerations: LS considerations: Wavelength Wavelength  Output power Output power Modulation.
The Performance of Chip-Scale Atomic Clocks V. Gerginov 1, S. Knappe 2, P.D.D. Schwindt 3, V. Shah 2, J. Kitching 3, L. Hollberg 3 In collaboration with:
MID-IR SATURATION SPECTROSCOPY OF HeH + MOLECULAR ION HSUAN-CHEN CHEN,CHUNG-YUN HSIAO Institute of Photonics Technologies, National Tsing Hua University,
High-speed ultrasensitive measurements of trace atmospheric species 250 spectra in 0.7 s David A. Long A. J. Fleisher, D. F. Plusquellic, J. T. Hodges.
LINE PARAMETERS OF WATER VAPOR IN THE NEAR- AND MID-INFRARED REGIONS DETERMINED USING TUNEABLE LASER SPECTROSCOPY Nofal IBRAHIM, Pascale CHELIN, Johannes.
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
Quantum Noise Measurements at the ANU Sheon Chua, Michael Stefszky, Conor Mow-Lowry, Sheila Dwyer, Ben Buchler, Ping Koy Lam, Daniel Shaddock, and David.
CNRS LKB – Task T1 Current status of the experiment on optomechanical coupling Sensitivity: 5.10  20 m.Hz  1/2   New high-finesse, high-power cavity.
ULTRA-BROAD BANDWIDTH CAVITY ENHANCED ABSORPTION SPECTROSCOPY Paul S. Johnston Kevin K. Lehmann Department of Chemistry University of Virginia.
High Precision Mid-Infrared Spectroscopy of 12 C 16 O 2 : Progress Report Speaker: Wei-Jo Ting Department of Physics National Tsing Hua University
Tunable Mid-IR Frequency Comb for Molecular Spectroscopy
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall University of Illinois at Urbana-Champaign.
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall Chemistry Department, University of Illinois at Urbana-Champaign.
Sub-Doppler Spectroscopy of Molecular Ions in the Mid-IR James N. Hodges, Kyle N. Crabtree, & Benjamin J. McCall WI06 – June 20, 2012 University of Illinois.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
__–––– Sensitivity Scaling of Dual Frequency Combs Ian Coddington, Esther Baumann, Fabrizio Giorgetta, William Swann, Nate Newbury NIST, Boulder, CO
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
HIGH RESOLUTION SPECTROSCOPY USING A TUNABLE THz SYNTHESIZER BASED ON PHOTOMIXING Arnaud Cuisset, Laboratoire de Physico-Chimie de l’Atmosphère, Maison.
Broadband Mid-infrared Comb-Resolved Fourier Transform Spectroscopy Kevin F. Lee A. Mills, C. Mohr, Jie Jiang, Martin E. Fermann P. Masłowski.
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
HIGH PRECISION MID-IR SPECTROSCOPY OF N2O NEAR 4.5 μm Wei-jo (Vivian) Ting and Jow-Tsong Shy Department of Physics National Tsing Hua University Hsinchu,
Haifeng Huang and Kevin K. Lehmann
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
Fiber-laser-based NICE-OHMS
Abstract The Hannover Thermal Noise Experiment V. Leonhardt, L. Ribichini, H. Lück and K. Danzmann Max-Planck- Institut für Gravitationsphysik We measure.
High Precision, Sensitive, Near-IR Spectroscopy in a Fast Ion Beam Michael Porambo, Holger Kreckel, Andrew Mills, Manori Perera, Brian Siller, Benjamin.
Long Term Stability in CW Cavity Ring-Down Experiments
DIODE-LASER AND FOURIER-TRANSFORM SPECTROSCOPY OF 14 NH 3 AND 15 NH 3 IN THE NEAR-INFRARED (1.5 µm) Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL Laboratoire.
Development of a System for High Resolution Spectroscopy with an Optical Frequency Comb Dept. of Applied Physics, Fukuoka Univ., JST PRESTO, M. MISONO,
Quantum-Noise-Limited Cavity Ring-Down Spectroscopy in the Mid-Infrared Adam J. Fleisher,* David A. Long, Qingnan Liu, and Joseph T. Hodges Material Measurement.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
I. Ventrillard-Courtillot, Th. Desbois, T. Foldes and D. Romanini
FREQUENCY-AGILE DIFFERENTIAL CAVITY RING-DOWN SPECTROSCOPY
A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev Analysis of CW-CRDS spectra of 16 O 3 : 6000 to 6200 cm -1 spectral range Groupe de Spectrométrie Moléculaire.
Tze-Wei Liu Y-C Hsu & Wang-Yau Cheng
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Shui-Ming Hu (胡水明) University of Science & Technology of China (USTC) Hefei, China June 17, 2014, ISMS-UIUC Doppler broadening thermometry based on cavity.
Ultrasensitive, high accuracy measurements of trace gas species D. A. Long, A. J. Fleisher, J. T. Hodges, and D. F. Plusquellic ISMS 24 June 2015 Figure.
Broadband Comb-resolved Cavity Enhanced Spectrometer with Graphene Modulator C.-C. Lee, T. R. Schibli Kevin F. Lee C. Mohr, Jie Jiang, Martin E. Fermann.
Ultra-stable, high-power laser systems Patrick Kwee on behalf of AEI Hannover and LZH Advanced detectors session, 26. March 2011 Albert-Einstein-Institut.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
INDIRECT TERAHERTZ SPECTROSCOPY OF MOLECULAR IONS USING HIGHLY ACCURATE AND PRECISE MID-IR SPECTROSCOPY Andrew A. Mills, Kyle B. Ford, Holger Kreckel,
Topic report 11/09/01 Optical Spectrum Analyzer (OSA) Speaker: Chieh-Wei Huang Advisor: Sheng-Lung Huang Solid-State Laser Crystal and Device Laboratory.
Date of download: 6/2/2016 Copyright © 2016 SPIE. All rights reserved. Dye ring laser control, spectroscopic, and locking feedback system showing overlapping,
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
Date of download: 6/17/2016 Copyright © 2016 SPIE. All rights reserved. Standard pump-probe saturation spectroscopy with electronic feedback to the laser.
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 : ← Band Near 4.3 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
Mingyun Li & Kevin Lehmann Department of Chemistry and Physics
Multiple Isotope Magneto-Optical Trap from a Single Diode Laser
Progress toward squeeze injection in Enhanced LIGO
Comb-Assisted Cavity Ring Down Spectroscopy
69th. International Symposium on Molecular Spectroscopy
Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL
Two-Photon Absorption Spectroscopy of Rubidium
Advertisement.
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall
An accurate and complete empirical line list for water vapor
Presentation transcript:

Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041, France

Very high sensitivity for both low concentrations & weak lines detection Fundamental and Applied Spectroscopy Tools & databases

2% absorption from earth to moon are equivalent to…a km cell! ~ 30 cm 30 cm meter on earth Cavity Ring Down Spectroscopy

Cavity enhanced techniques: what sensitivity limits? (according we have good mirrors)

First issue : photon shot-noise An efficient laser-cavity light coupling is needed to enhance performances Laser  ~2 MHz N photons S/B = N 1/2 quantum limit =1.5 µm N~ photons/s Sampling at 1 Ms/s Within 1µs ~ 10 7 photons collected Maximal S/N = mW 1 µW  ~2 kHz

Second issue : frequency noise The source frequency noise converts to amplitude noise in the line wings

OFFS-CRDS addresses those two issues narrow but widely tunable source PDH-locked ultra-sensitive CRDS

Optical feedback : narrowing the source Laser The laser drasticaly narrows… with almost no effort. 2 MHz 2 kHz sub Hz B. Dahmani et al., Opt. Lett. 12, 876 (1987). P. Laurent et al., IEEE J. Quantum Electron. 25, 1131 (1989). S. Ohshima and H. Schnatz, J. Appl. Phys. 71, 3114 (1992). J. Morville et al., Appl. Phys. B 80, 1027 (2005).

Frequency / time Power Optical feedback Laser < Hz 150 MHz The laser frequency literaly jumps from mode to mode It is inherently “frequency agile” What happens as the laser is tuned?

Going further : separate laser source and gas cell Laser Ctrl Fiber Coupling Gives a stable & narrow laser Gives a high S/N The OFFS-CRDS

Going further : tunability frequency shifted output 0° 90° ν RF RF synthesizer isolator Fiber coupling DFB laser photo- diode optical feedback reference cavity temperature stabilized vacuum chamber PZTPZT ν n +ν RF servo loop νnνn νnνn Mach-Zehnder modulator Frequency ≈ 186 THz Linewidth < 500 Hz Drift < 20 Hz/s Tunability = 1 THz Opt. Lett. 38 (12), 2013 Single side-band modulator

Going further : sensitivity Stabilized Cavity Ring Down Opt. Lett. 38 (12), 2013

Going further : sensitivity Very close to the shot-noise limit and sensitivity of 2x cm -1 Hz -1/2 Opt. Lett. 38 (12), 2013

Spectrum of carbon dioxide (10 Pa) nm nm spectrometer dynamic range > · cm -1 RMS

Test of advanced line profiles Appl.Phys.B 119, (2015) CO 2 broadened by N 2 P T =150 Pa P CO2 = 0.75 Pa

Application to spectroscopy of CO 2 J.Chem. Phys 142, (2015)Appl.Phys.B 119, (2015) With M. Marangoni and T. Sala Politecnico di Milano

Application to spectroscopy of CO 2 J.Chem. Phys 142, (2015)Appl.Phys.B 119, (2015) With M. Marangoni and T. Sala Politecnico di Milano 6 kHz RMS

Saturated absorption – Lamb dip with 0.25 Pa CO 2 – 40 kHz frequency steps on 15 MHz span (≡ 1 minute scan) 160 μW input power ─ intracavity peak intensity > 1 kW/cm 2 SNR ~ 50 ↔ line center retrieval at 2 kHz precision (3) ← P(16) line Opt. Lett. 39 (16), 2014

Saturated absorption – Lamb dip with 0.25 Pa CO 2 – Burkart et al., J.Chem. Phys 142, , 2015

J. Burkart Thesis manuscript (2015) Saturated absorption – Full data treatment – Unsaturated part from non exponential fit Measurement with pure exponential fit

Towards Sustainable Spectroscopy Shot Noise limited absolute frequency broadband saturated spectroscopy… is on the way !

The (almost) full team Thank you for your attention!