1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.

Slides:



Advertisements
Similar presentations
Complexity ©D.Moshkovits 1 Where Can We Draw The Line? On the Hardness of Satisfiability Problems.
Advertisements

1 Conjunctions of Queries. 2 Conjunctive Queries A conjunctive query is a single Datalog rule with only non-negated atoms in the body. (Note: No negated.
Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Lecture 11 (2005) Richard Cleve DC 3524
Lecture 23. Subset Sum is NPC
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 / RAC 2211 Lecture.
Quantum Speedups DoRon Motter August 14, Introduction Two main approaches are known which produce fast Quantum Algorithms The first, and main approach.
Superdense coding. How much classical information in n qubits? Observe that 2 n  1 complex numbers apparently needed to describe an arbitrary n -qubit.
Gradient Methods May Preview Background Steepest Descent Conjugate Gradient.
“Both Toffoli and CNOT need little help to do universal QC” (following a paper by the same title by Yaoyun Shi) paper.
1 Recap (I) n -qubit quantum state: 2 n -dimensional unit vector Unitary op: 2 n  2 n linear operation U such that U † U = I (where U † denotes the conjugate.
1 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 14 (2009)
1 Introduction to Quantum Information Processing QIC 710 / CS 678 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 / QNC 3129 Lectures.
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 16 (2011)
Peter Høyer Quantum Searching August 1, 2005, Université de Montréal The Fifth Canadian Summer School on Quantum Information.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 2117 Lecture.
October 1 & 3, Introduction to Quantum Computing Lecture 2 of 2 Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum.
February 18, 2015CS21 Lecture 181 CS21 Decidability and Tractability Lecture 18 February 18, 2015.
Lecture 22 More NPC problems
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 653 Course.
Algorithms Artur Ekert. Our golden sequence H H Circuit complexity n QUBITS B A A B B B B A # of gates (n) = size of the circuit (n) # of parallel units.
October 1 & 3, Introduction to Quantum Computing Lecture 1 of 2 Introduction to Quantum Computing Lecture 1 of 2
NP Complexity By Mussie Araya. What is NP Complexity? Formal Definition: NP is the set of decision problems solvable in polynomial time by a non- deterministic.
Week 10Complexity of Algorithms1 Hard Computational Problems Some computational problems are hard Despite a numerous attempts we do not know any efficient.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 2117 Lecture.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 20 (2009)
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Lecture 6 NP Class. P = ? NP = ? PSPACE They are central problems in computational complexity.
The Computational Complexity of Satisfiability Lance Fortnow NEC Laboratories America.
1 Introduction to Quantum Information Processing CS 667 / Phys 767 / C&O 681 Richard Cleve DC 2117 Lecture 15 (2008)
Exact quantum algorithms Andris Ambainis University of Latvia.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
CS 461 – Nov. 30 Section 7.5 How to show a problem is NP-complete –Show it’s in NP. –Show that it corresponds to another problem already known to be NP-complete.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 653 Lecture.
Quantum Computing MAS 725 Hartmut Klauck NTU
Lecture 25 NP Class. P = ? NP = ? PSPACE They are central problems in computational complexity.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Can small quantum systems learn? NATHAN WIEBE & CHRISTOPHER GRANADE, DEC
Complexity ©D.Moshkovits 1 2-Satisfiability NOTE: These slides were created by Muli Safra, from OPICS/sat/)
Richard Cleve DC 2117 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Lecture (2011)
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 2117 Lecture.
Complexity ©D.Moshkovitz 1 Our First NP-Complete Problem The Cook-Levin theorem A B C.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lectures
CSE 332: NP Completeness, Part II Richard Anderson Spring 2016.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Richard Cleve DC 3524 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Lecture.
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Lecture.
Quantum algorithms for evaluating Boolean formulas
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 16 (2009) Richard.
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 15 (2009) Richard.
Lecture 2-2 NP Class.
Introduction to Quantum Computing Lecture 1 of 2
(xy)(yz)(xz)(zy)
Lecture 5 NP Class.
Where Can We Draw The Line?
Lecture 24 NP-Complete Problems
Richard Cleve DC 2117 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Lecture 15 (2011)
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 24 (2009) Richard.
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 18 (2009) Richard.
CSE 6408 Advanced Algorithms.
CSE 589 Applied Algorithms Spring 1999
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 16 (2009) Richard.
Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Lecture 17 (2005) Richard Cleve DC 3524
Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Lecture 4 (2005) Richard Cleve DC 653
Richard Cleve DC 3524 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Lecture.
Presentation transcript:

1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course web site at: Lecture 15 (2005)

2 Contents Grover’s quantum search algorithm Optimality of Grover’s algorithm

3 Grover’s quantum search algorithm Optimality of Grover’s algorithm

4 Quantum search problem Given: a black box computing f : {0,1} n  {0,1} Goal: determine if f is satisfiable (if  x  {0,1} n s.t. f(x) = 1 ) In positive instances, it makes sense to also find such a satisfying assignment x Classically, using probabilistic procedures, order 2 n queries are necessary to succeed—even with probability ¾ (say) x1x1 xnxn yy xnxn x1x1  y  f ( x 1,...,x n )  UfUf Grover’s quantum algorithm that makes only O(  2 n ) queries Query: [Grover ’96]

5 Applications of quantum search The function f could be realized as a 3-CNF formula: Alternatively, the search could be for a certificate for any problem in NP 3-CNF-SAT FACTORING P NP PSPACE co-NP The resulting quantum algorithms appear to be quadratically more efficient than the best classical algorithms known

6 Prelude to Grover’s algorithm: two reflections = a rotation  11 22 11 22 Consider two lines with intersection angle  : reflection 1 reflection 2 Net effect: rotation by angle 2 , regardless of starting vector

7 Grover’s algorithm: description I x1x1 xnxn yy xnxn x1x1  y  [ x = ]  U0U0 x1x1 xnxn yy xnxn x1x1  y  f ( x 1,...,x n )  UfUf U f  x  = (  1) f(x)  x  H H H H X X X X X X Hadamard Basic operations used: Implementation? U 0  x  = (  1) [ x = 0...0]  x 

8 Grover’s algorithm: description II 1.construct state H   2.repeat k times: apply  H U 0 H U f to state 3. measure state, to get x  {0,1} n, and check if f (x) =1 00 00   UfUf HHU0U0 HUfUf HU0U0 H iteration 1 iteration 2... (The setting of k will be determined later)

9 Grover’s algorithm: analysis I and N = 2 n and a = | A | and b = | B | Let A = { x  {0,1} n : f (x) = 1 } and B = { x  {0,1} n : f (x) = 0 } Letand BB AA H   Consider the space spanned by  A  and  B  Interesting case: a << N  goal is to get close to this state

10 Grover’s algorithm: analysis II Algorithm: (  H U 0 H U f ) k H   BB AA H   Observation: U f is a reflection about  B  : U f  A  =   A  and U f  B  =  B  Question: what is  H U 0 H ? Partial proof:  H U 0 H H   =  H U 0   =  H (    ) = H   U 0 is a reflection about H  

11 Grover’s algorithm: analysis III Algorithm: (  H U 0 H U f ) k H   BB AA H    22 22 22 22 Since  H U 0 H U f is a composition of two reflections, it is a rotation by 2 , where sin (  )=  a/N   a/N When a = 1, we want (2k+1)(1/  N)   / 2, so k  (  / 4)  N More generally, it suffices to set k  (  / 4)  N/a Question: what if a is not known in advance?

12 Grover’s quantum search algorithm Optimality of Grover’s algorithm

13 Optimality of Grover’s algorithm Proof (of a slightly simplified version): f U0U0 U1U1 U2U2 U3U3 UkUk fff and that a k -query algorithm is of the form where U 0, U 1, U 2,..., U k, are arbitrary unitary operations Theorem: any quantum search algorithm for f : {0,1} n  {0,1} must make  (  2 n ) queries to f (if f is used as a black-box) f |x|x (  1) f(x) | x  Assume queries are of the form | 

14 Optimality of Grover’s algorithm Define f r : {0,1} n  {0,1} as f r ( x ) = 1 iff x = r frfr U0U0 U1U1 U2U2 U3U3 UkUk frfr frfr frfr |0|0 | ψ r,k  Consider versus I U0U0 U1U1 U2U2 U3U3 UkUk III |0|0 | ψ r, 0  We’ll show that, averaging over all r  {0,1} n, || | ψ r,k   | ψ r, 0  ||  2 k /  2 n

15 Optimality of Grover’s algorithm Consider I U0U0 U1U1 U2U2 U3U3 UkUk Ifrfr frfr |0|0 | ψ r,i  k  ik  i i | ψ r,k   | ψ r, 0  = ( | ψ r,k   | ψ r,k  1  ) + ( | ψ r,k  1   | ψ r,k  2  ) ( | ψ r,1   | ψ r,0  ) Note that || | ψ r,k   | ψ r, 0  ||  || | ψ r,k   | ψ r,k  1  || || | ψ r,1   | ψ r,0  || which implies

16 Optimality of Grover’s algorithm I U0U0 U1U1 U2U2 U3U3 UkUk Ifrfr frfr |0|0 | ψ r,i  query i query i +1 || | ψ r,i   | ψ r,i -1  || = | 2  i,r |, since query only negates | r  I U0U0 U1U1 U2U2 U3U3 UkUk IIfrfr |0|0 query i query i +1 | ψ r,i-1  Therefore, || | ψ r,k   | ψ r, 0  || 

17 Optimality of Grover’s algorithm Therefore, for some r  {0,1} n, the number of queries k must be  (  2 n ), in order to distinguish f r from the all-zero function Now, averaging over all r  {0,1} n, (By Cauchy-Schwarz) This completes the proof

18