Vaikne nukleatsioon: mõõtmistulemused ja modelleerimine (Quiet phase of atmospheric aerosol nucleation: measurements and models) H. Tammet AEL seminar.

Slides:



Advertisements
Similar presentations
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
Advertisements

CHAPTER 10 EFFECT OF ELECTROLYTES ON CHEMICAL EQUILIBRIA
Example   Write a charge balance equation for a solution containing KI and AlI3. Solution KI g K+ + I- AlI3 = Al I- H2O D H+ + OH- The equation can.
Microscale structure of air ion spatial and temporal distribution: some problems Hyytiälä
New particle formation in Amazon: Clouds, rain and ions Radovan Krejci 1,2, Modris Matisans 1, Peter Tunved 1, Hanna Manninen 2, John Backman 2, Luciana.
Quantum chemical studies on atmospheric sulfuric acid nucleation Theo Kurtén Division of Atmospheric Sciences Department of Physical Sciences University.
Ch 6: Good Titrations.
Electroscavenging of Condensation and Ice- Forming Nuclei Brian A. Tinsley University of Texas at Dallas WMO Cloud Modeling Workshop,
Biogenic Secondary Organic Aerosol Formation Michael Boy ASP / ACD / NCAR.
Global Aerosol Microphysics With TOMAS Peter J. Adams Acknowledgments: Win Trivitayanurak GEOS-CHEM User’s Meeting April 7, 2009 Center for Atmospheric.
Cyclones & Electrostatic Precipitators
The Spatiotemporal Evolution of an RF Dusty Plasma: Comparison of Numerical Simulations and Experimental Measurements Steven Girshick, Adam Boies and Pulkit.
Some Impacts of Atmospheric Aerosols Direct and Indirect Effects on Climate directly scattering solar radiation altering number and size distribution of.
Interfacial transport So far, we have considered size and motion of particles In above, did not consider formation of particles or transport of matter.
A. CLARKE 1, C. McNAUGHTON 1, S. HOWELL 1, V. KAPUSTIN 1, K. MOORE, B. BLOMQUIST, R. WEBER and F. EISELE 2 1 School Of Ocean and Earth Science and Technology,
VII. How might current analysis methods be enhanced or combined to obtain more information about the nature of OC, EC, and other carbon fractions in filter.
Aerosol protection of laser optics by Electrostatic Fields (not manetic) L. Bromberg ARIES Meeting Madison WI April 23, 2002.
Nucleation: Formation of Stable Condensed Phase Homogeneous – Homomolecular H 2 O (g)  H 2 O (l) Homogeneous – Heteromolecular nH 2 O (g) + mH 2 SO 4(g)
New Particle Formation in the Global Atmosphere Fangqun Yu Atmospheric Sciences Research Center, State University of New York at Albany Zifa Wang Institute.
Coagulation - definitions
V. M. Sorokin, V.M. Chmyrev, A. K. Yaschenko and M. Hayakawa Strong DC electric field formation in the ionosphere over typhoon and earthquake regions V.
EVALUATION OF THE IONIC AIR PURIFICATION EFFICIENCY BY THE ELECTRICAL LOW PRESSURE IMPACTOR (ELPI) Wein ionic air purifiers VI-2500AS150MM (+) positive.
Meteorologisches Observatorium Hohenpeißenberg, Sulfuric acid is a key components in new particle formation in the atmosphere. Nucleation.
Ionisation as a precursor to aerosol formation
Periodic Trends. Nuclear Charge Shielding Atomic Radius.
Simulating of nucleation bursts in forest
Rescue of retrospective aerosol measurements: a challenge for Estonian Environmental Observatory Rescue of retrospective aerosol measurements: a challenge.
Measurement of aerosol and VOC turbulent fluxes and in-canopy particle characterization at a pristine forest in Amazonia Luciana Rizzo.
Why plasma processing? (1) UCLA Accurate etching of fine features.
COSMIC WEATHER, ATMOSPHERIC NANOAEROSOLS, and HUMAN HEALTH A.A. Lushnikov, Yu.S. Lyubovtseva, V.A. Zagaynov, and A.D. Gvishiani Geophysical Center of RAS,
Nanoparticle diameter and mobility calculator assuming singly charged spherical symmetric aerosol particles Pühajärve 2014.
1700s 1800s CoulombAmpereFranklin Gauss Faraday, (9/22/1791 – 8/25/1867)Maxwell, (6/13/1831 – 11/5/1879) Einstein, (3/14/1879 – 4/18/1955)
An Overview of Current and Propose Radioactive Nano- Particle Creation and Use L. Scott Walker Los Alamos National Laboratory 03/17/08.
Department of Mechanical Engineering The Pearlstone Center for Aeronautical Engineering Studies Ben-Gurion University of the Negev P.O.B. 653, Beer Sheva.
Static Electricity, Electric Forces, Electric Fields, Electric Potential Energy, Electric Potential, Capacitors.
Multi-beams simulation in PIC1D Hands-on section 4.
1 The roles of H 2 SO 4 and organic species in the growth of newly formed particles in the rural environment Wu Zhijun Leibniz-Institute for Tropospheric.
Resolution of a DMA at atmospheric measurements Pühajärve 2010 (a simplified approach)
Lecture Objectives -Finish with age of air modeling -Introduce particle dynamics modeling -Analyze some examples related to natural ventilation.
Laboratory of Environmental Physics Institute of Physics, University of Tartu Quiet nucleation of atmospheric aerosol and intermediate.
A proposal of ion and aerosol vertical gradient measurement (as an example of application of the heat transfer equations) H. Tammet Pühajärve 2008.
Balloelectric genesis of intermediate ions (a synopsis) Hannes Tammet, Urmas Hõrrak, Kaupo Komsaare, Markku Kulmala.
BSMA Filter step 3.5 sheet 0.5, gap Condenser width 260, HV electrode thickness 3.0 Collector size 32.4×170.6, gap 1.3 C0 R1.
Introduction Physics and chemistry of air ions Development of instrumentation Measurements of atmospheric ions Research of ion-induced nucleation Atmospheric.
KL-parameterization of atmospheric aerosol size distribution University of Tartu, Institute of Physics Growth of nanometer particles.
FINESTION a complete dataset of routine air ion measurements 2003 – 2006 in co-operation with: Urmas Hõrrak, Kaupo Komsaare,
Separation Techniques
Collisional Processes In chemistry, the rate of 2-body reactions is based on the rate of collisions between the two species times the probability that.
KL-parameterization of atmospheric aerosol size distribution University of Tartu, Institute of Physics with participation of Marko.
Aerosol Size Distribution Performance Based on Changes to Particle Emissions and Nucleation Robert A. Elleman & David S. Covert Department of Atmospheric.
Estimating of neutral nanoparticles according to measurements of intermediate ions Hyytiälä Kaupo Komsaare & Urmas Hõrrak.
Four open datasets of atmospheric ion and aerosol measurements with acknowledgements to colleagues providing the data for open access.
Ion-Induced Nucleation of Atmospheric Aerosols Peter H. McMurry, PI Kenjiro (Ken) Iida, Graduate Student Department of Mechanical Engineering University.
Ions in LAPD Can we Observe Them in Long Bo ? 3/6/2016 Ions in LAPD Sarah Lockwitz and Hans Jostlein, Fermilab 1 Sarah Lockwitz and Hans Jostlein Fermilab.
A new mobility analyzer for routine measurement of atmospheric aerosol in the diameter range of 0.4−7.5 nm Institute of Physics, University.
Experimental study of the “rain effect” on the mobility distribution of air ions. Experiments with water jet. U. Hõrrak, H. Tammet, E.Tamm, A. Mirme. Institute.
Static Electricity, Electric Forces, Electric Fields.
OBSERVATION ON ION DYNAMICS Urmas Hõrrak, Hannes Tammet Institute of Environmental Physics, University of Tartu, 18 Ülikooli St., Tartu, Estonia.
Jeng K. Rongchai FETE Conference 21 July 2011.
Thunderstorm Dynamics Group Atmospheric ions and new particle formation For RAC meeting, Presented by Deveandraa Siingh The New particle formation (NPF)
Comments about integral parameters of atmospheric aerosol particle size distribution and two power law Comments about integral parameters of atmospheric.
Air ion research Air ion research
Experimental study of the “rain effect” on the mobility distribution of air ions. Experiments with water jet. U. Hõrrak, H. Tammet, E.Tamm, A. Mirme.
Kaupo Komsaare & Urmas Hõrrak
Hyytiälä Microscale structure of air ion spatial and temporal distribution: some problems Hyytiälä
OBSERVATION ON ION DYNAMICS
Introduction Motivation Objective
Particle formation and growth
Particle Size and Size Distributions
An Interactive Population Balance Tool: DPB M. J
Presentation transcript:

Vaikne nukleatsioon: mõõtmistulemused ja modelleerimine (Quiet phase of atmospheric aerosol nucleation: measurements and models) H. Tammet AEL seminar 6. aprill 2011

Aparatuur SIGMA: Tammet, H. (2011) Symmetric inclined grid mobility analyzer for the measurement of charged clusters and fine nanoparticles in atmospheric air. Aerosol Sci. Technol., 45, Air inlet Air outlet through multi-orifice plate Repelling electrode Attracting electrodes Sheath air filter Repelling electrode Sheath air filter Attracting electrodes Repelling electrode Shield electrode Inlet gate Air ion trajectory Electrometric filter for positive ions Filter batteries Electrometric filter for negative ions Filter batteries Shield electrode Repelling electrode HALVEM POOL MÕÕTMISI PAREM POOL MÕÕTMISI MÜRA (10 min tsüklid)

Mõõtmistulemusi 1.SIGMA abil salvestatud liikuvusjaotustest moodustati kolmetunnikeskmised kasutades ainult kompaktseid tunnikolmikuid: 2.Tartu andmete 1705-st tunnikolmikust valiti edasiseks töötluseks 200 madalama müraga kolmikut ja Tammemäe andmete 242-st tunnikolmikust Tabelid järjestati kergete ja keskmiste ioonide vahelise miinimumi sügavuse järgi. 4.Valiti andmed 12 diagrammi jaoks: U+116×3 eriti madala keskmiste ioonide tasemega tundi linnas U+280×3 madala keskmiste ioonide tasemega tundi linnas U+380×3 keskpärase keskmiste ioonide tasemega tundi linnas U-116×3 eriti madala keskmiste ioonide tasemega tundi linnas U-280×3 madala keskmiste ioonide tasemega tundi linnas U-380×3 keskpärase keskmiste ioonide tasemega tundi linnas R+116×3 eriti madala keskmiste ioonide tasemega tundi maal R+248×3 madala keskmiste ioonide tasemega tundi maal R+348×3 keskpärase keskmiste ioonide tasemega tundi maal R-116×3 eriti madala keskmiste ioonide tasemega tundi maal R-148×3 madala keskmiste ioonide tasemega tundi maal R-148×3 keskpärase keskmiste ioonide tasemega tundi maal

ZlogZU+1U+2U+3U-1U-2U-3R+1R+2R+3R Keskmiste ioonide madala kontsentratsiooniga liikuvusjaotuste tabel

Keskmiste ioonide jaotuskõverad Tartus, kolm taset Z : cm 2 V -1 s

Keskmiste ioonide jaotuskõverad Tammemäel, kolm taset Z : cm 2 V -1 s

Ioonid ja neutraalid Tähelepanu all on osakesed diameetriga 1.5 kuni 7.5 nm. Mõõta saame laetud osakeste ehk keskmiste ioonide liikuvusi ja kontsentratsioone. Keskmised ioonid on praktiliselt kõik ühelaengulised ning liikuvuse järgi saab üheselt teada diameetri. Ioonid kontsentratsiooni järgi neutraalide kontsentratsiooni hindamine on aga probleemne, sest kasvavad osakesed ei ole tasakaalulises olekus d : nm Kombinatsioonikordaja sõltub osakese diameetrist ja polaarsusest. Lihtsustus: Tasakaal: Laetusolek

Eluiga Kerged ioonid surevad kas aerosooliosakestega ühinedes või vastastikku rekombineerudes A_tools ülesanne “ion_aerosolsink (e.g. on background aerosol)” → S b = 0.01 s -1 Kergete ioonide dünaamika: rekombinatsioonikordaja fooniaerosooli- neel fooniaerosooli kontsentratsioon keskmine kombinatsioonikordaja Monodispersne tüüpfoon → S b ≈ s -1 Kerge iooni keskmine eluiga tüüpfooni korral 1 / S ≈ 100 s

Eluiga Nanoosakesed kaovad kas fooniaerosooliosakestega ühinedes või mõõdust välja kasvades Tüüpfoon Nanoosakeste neel fooniaerosoolil: fooniaerosooli kontsentratsioon nanoosakeste diameeter fooniosakeste diameeter koagulatsioonitegur d n : nm *K cm 3 /s : min τ ≈ 1/S b

Päritolu 100 m Segunemiskõrgus ≈ Hinnangud: Tuulekaugus ≈ ( τ : min) km Segunemiskõrguse hinnangu lähtekoht: Radooni eluiga on ca 100 h ja segunemiskõrgus keskpärase turbulentsi tingimustes ca 1 km. d n : nm τ : min Tuulekaugus km Segunemiskõrgus m NB: segunemiskõrguse hinnang ei kehti rünkpilvede all Järeldus: nanoosakesed on maapinna lähedal toimuva nukleatsiooni tulemus, erand: arenenud konvektsioon atmosfääris

Küsimus enne teooriaga alustamist: Keskmised ioonid pole pole kergetest võrreldamatult suuremad ja kergete ioonidega rekombineerumine võiks neid märgatavalt kasvatada. Kas see nähtus võiks olla keskmiste ioonide kasvu seletamisel oluline?

Growth of nanoparticles with deposited small ions Volume growth rate G V = dV/dt and diameter growth rate G = dd p /dt: V = (π/6)d p 3 and dV/dt = (π/2)d p 2 G. Conclusion: G = 2G V / (πd p 2 ). Flux of ion number to a particle is nβ(d p ) and ion volume is (π/6)d o 3. Thus the volume growth rate G V = (π/6)d o 3 nβ(d p ). Theoretical estimate: G = 2(π/6)d o 3 nβ(d p ) / (πd p 2 ) = (1/3)(d o 3 / d p 2 )nβ(d p ). If the nanoparticle is charged then β = β* else β = βº. Let d o = 0.75 nm and n = 500 cm –3. Then for dp := 1 to 9 do begin c := (1/3) * 0.75 * 0.75 * 0.75 / (dp * dp); gneutral := c * 500 * attachment_coefficient ( 0, 0.73, 2, dp, 273, 1013); gcharged := c * 500 * attachment_coefficient (-1, 0.73, 2, dp, 273, 1013); writeln (dp, 3600 * gneutral :9:4, 3600 * gcharged :9:4); end; charge d ion density of ionic matter hour / second n

Kasvu kiirus G : nm/h neutral charged d p G o G * Järeldus: ……………………

The model is designed using approximations, which are explained in publications: Tammet, H., Kulmala, M. (2005) Simulation tool for atmospheric aerosol nucleation bursts. J. Aerosol Sci., 36, Tammet, H., Kulmala, M. (2007) Simulating aerosol nucleation bursts in a coniferous forest, Boreal Env. Res., 12, Lihne teoreetiline mudel

Evolution of nanometer particles in a sectional model SECTION i SECTION i - 1 SECTION i + 1 didi d i-1 d i+1 NiNi N i-1 N i+1 G i-1 GiGi

BACKGROUND AEROSOL Evolution of nanometer particles in a sectional model SINK OUTGROWINTAKE CHARGE CONVERSION SECTION i SECTION i - 1 SECTION i + 1

Dynamics of neutral particles in section i = concentration of neutral particles in section i = growth rate of neutral particle out from section i = attachment coefficient of –ion to +particle of size d i = concentration of positive small ions = sink of neutral particles on the background aerosol NB: if i = 1 then is to be replaced with J o

Simplifications:,, If i = 1 then else Dynamics of neutral particles in section i background particles are monodisperse but polycharged Sink of nanoparticles on background aerosol S i probability to carry charge q concentration of particles of size d bck coagulation coefficient

Steady state of neutral particles in section i Intake: Dynamics: Steady state: What is known and what is unknown in these equations?

If both N o and N * are measured and any of G i is known then would be possible to calculate step by step G i+1, G i+1, G i+1, … Unfortunately, only N * can be directly measured. If the particles would not grow then in the steady state: Kerminen, V.-M., T. Anttila, T. Petäjä, L. Laakso, S. Gagne, K. E. J. Lehtinen, and M. Kulmala (2007), Charging state of the atmospheric nucleation mode: Implications for separating neutral and ion-induced nucleation, J. Geophys. Res., 112, D21205, doi: /2007JD The growing particles “remember” the charging state of the smaller particles. A simple approximation is: First approximation:

Experiment 1: Test distribution

p = 1013 mb, T = 0 C, ionization rate = 5 nucleation: neutral = 1.88 charged = 0.00 n_ion = 497, Z_ion = 1.50, d_CST = 2.00 background aerosol N = /cm3, d = 300 nm dN*/dd dN0/dd Sb:1/h Gr:nm/h intake dn*/dt CST

Modelleerimine puhangusimulaatori abil Burstgrowthtable d GR I = 5 Z ion = 1.5 J = 3 Background aerosol d = 300 nm, N =1500 Birthsize 1.63

eest tähelepanu Täname