2004 Multichannel integrated circuits for digital X-ray imaging with energy windowing Krzysztof Świentek Department of Nuclear Electronics FPNT, AGH Kraków.

Slides:



Advertisements
Similar presentations
SAAB SPACE 1 The M2 ASIC A mixed analogue/digital ASIC for acquisition and control in data handling systems Olle Martinsson AMICSA, October 2-3, 2006.
Advertisements

1 Research & Development on SOI Pixel Detector H. Niemiec, T. Klatka, M. Koziel, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor, M. Szelezniak AGH – University.
Specific requirements for analog electronics of a high counting rate TRD Vasile Catanescu NIHAM - Bucharest CBM 10th Collaboration Meeting Sept 25 – 28,
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
The NO A APD Readout Chip Tom Zimmerman Fermilab May 19, 2006.
MDT-ASD PRR C. Posch30-Aug-02 1 Specifications, Design and Performance   Specifications Functional Analog   Architecture Analog channel Programmable.
CMOS VLSIAnalog DesignSlide 1 CMOS VLSI Analog Design.
NA62 front end Layout in DM option Jan Kaplon/Pierre Jarron.
NA62 front end architecture and performance Jan Kaplon/Pierre Jarron.
Digital Integrated Circuits© Prentice Hall 1995 Inverter THE INVERTERS.
ACES Workshop 3-4 March, 2009 W. Dabrowski Serial power circuitry in the ABC-Next and FE-I4 chips W. Dabrowski Faculty of Physics and Applied Computer.
Evaluation of 65nm technology for front-end electronics in HEP Pierpaolo Valerio 1 Pierpaolo Valerio -
Analog IC Design First – A OPAMP Design Example. Date: 15th NOV, 2007 報告人:何建興.
DATA ACQUISITION Today’s Topics Define DAQ and DAQ systems Signals (digital and analogue types) Transducers Signal Conditioning - Importance of grounding.
A Serializer ASIC for High Speed Data Transmission in Cryogenic and HiRel Environment Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group.
Electronics for PS and LHC transformers Grzegorz Kasprowicz Supervisor: David Belohrad AB-BDI-PI Technical student report.
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
X-ray radiation damage of silicon strip detectors AGH University of Science and Technology Faculty of Physics and Applied Computer Science, Kraków, Poland.
Pierpaolo Valerio.  CLICpix is a hybrid pixel detector to be used as the CLIC vertex detector  Main features: ◦ small pixel pitch (25 μm), ◦ Simultaneous.
1 Monolithic Pixel Sensor in SOI Technology - First Test Results H. Niemiec, M. Koziel, T. Klatka, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor University.
Silicon Sensor with Readout ASICs for EXAFS Spectroscopy Gianluigi De Geronimo, Paul O’Connor Microelectronics Group, Instrumentation Division, Brookhaven.
1 Hall D Drift Chamber ElectronicsFJ Barbosa Drift Chamber Review6-8 March 2007 Electronics for CDC and FDC Hall D 1.Motivation 2.ASIC Development 3.Preamp.
A multichannel Time-To-Digital Converter ASIC with better than 3ps RMS Time Resolution Lukas Perktold (GRAZ/CERN), Jorgen Christiansen (CERN)
Front End Circuit.. CZT FRONT END ELECTRONICS INTERFACE CZTASIC FRONT END ELECTRONICS TO PROCESSING ELECTRONICS -500 V BIAS+/-2V +/-15V I/O signal.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Progress on STS CSA chip development E. Atkin Department of Electronics, MEPhI A.Voronin SINP, MSU.
Performance of a 128 Channel counting mode ASIC for direct X-ray imaging A 128 channel counting ASIC has been developed for direct X-ray imaging purposes.
Peter, Wieczorek - EE Low Noise Charge Sensitive Preamplifier Development for the PANDA Calorimeter Design and Measurements of the APFEL - Chip.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
Robert Szczygieł IFJ PANSPIE 2005 Radiation hardness of the mixed-mode ASIC’s dedicated for the future high energy physics experiments Introduction Radiation.
Analog Building Blocks for P326 Gigatracker Front-End Electronics
Hold signal Variable Gain Preamp. Variable Slow Shaper S&H Bipolar Fast Shaper 64Trigger outputs Gain correction (6 bits/channel) discriminator threshold.
Michał Dwużnik, for the SCT collaboration
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
65 nm CMOS analog front-end for pixel detectors at the HL-LHC
Thanushan Kugathasan, CERN Plans on ALPIDE development 02/12/2014, CERN.
Sensor testing and validation plans for Phase-1 and Ultimate IPHC_HFT 06/15/ LG1.
ASIC Activities for the PANDA GSI Peter Wieczorek.
Status of the n-XYTER testing Knut Solvag, Gerd Modzel, Christian Schmidt, Markus Höhl, Andrea Brogna, Ullrich Trunk, Hans-Kristian Soltveit CBM.
Low Power, High-Throughput AD Converters
A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group Department of.
Summary of FPIX tests Tom Zimmerman Fermilab May 16, 2007.
Fermilab Silicon Strip Readout Chip for BTEV
Low Power, High-Throughput AD Converters
Click to edit Master subtitle style Presented By Mythreyi Nethi HINP16C.
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
AIDA design review Davide Braga Steve Thomas ASIC Design Group 09 October 2008.
CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Gigatracker Front end based on ultra fast NINO circuit P. Jarron, G. Anelli, F. Anghinolfi,
CBM 12 th Meeting, October 14-18, 2008, Dubna Present status of the first version of NIHAM TRD-FEE analogic CHIP Vasile Catanescu and Mihai Petrovici NIHAM.
UPDATE ON CLICPIX2 DESIGN Pierpaolo Valerio Edinei Santin
Update on works with SiPMs at Pisa Matteo Morrocchi.
NEWS FROM MEDIPIX3 MEASUREMENTS AND IMPACT ON TIMEPIX2 X. Llopart CERN.
Low Power, High-Throughput AD Converters
Deep submicron readout chip development on behalf of D. Fougeron, 1 R. Hermel 1, H. Lebbolo 2, R. Sefri, 2 1 LAPP Annecy, 2 LPNHE Paris SiD phone meeting.
EE140 Final Project Members: Jason Su Roberto Bandeira Wenpeng Wang.
Analog Circuits Hiroyuki Murakami. CONTENTS Structure of analog circuits Development of wide linear range CSA system Problem of analog circuits How to.
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
CEA DSM Irfu IDeF-X HD Imaging Detector Front-end for X-ray with High Dynamic range Alicja Michalowska, CEA-IRFU 1 Journées VLSI June 2010.
The design of fast analog channels for the readout of strip detectors in the inner layers of the SuperB SVT 1 INFN Sezione di Pavia I Pavia, Italy.
Valerio Re Università di Bergamo and INFN, Pavia, Italy
Calorimeter Mu2e Development electronics Front-end Review
CTA-LST meeting February 2015
INFN Pavia and University of Bergamo
CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY
A Low Power Readout ASIC for Time Projection Chambers in 65nm CMOS
A Fast Binary Front - End using a Novel Current-Mode Technique
Status of n-XYTER read-out chain at GSI
BESIII EMC electronics
Turning photons into bits in the cold
Presentation transcript:

2004 Multichannel integrated circuits for digital X-ray imaging with energy windowing Krzysztof Świentek Department of Nuclear Electronics FPNT, AGH Kraków

2004 Introduction – multichannel ASICs Noise in MOS transistors Crosstalk in mixed–mode integrated circuits Random matching RX64DTH – digital imaging using silicon detectors Measurements results – chip tutorial Summary Content

2004 Introduction  multichannel ASIC Input signals - small amplitude (Qin = 1400 el) - stochastic character (amplitude, time) SET OF SENSORS ( silicon strip detector) MULTICHANNEL INTEGRATED CIRCUITS (analogue & digital blocks) CROSSTALK digital  analogue LIMITS: power & area LOW LEVEL OF NOISE UNIFORMITY OF PARAMETERS 6.5 mm RX64DTH

2004 Noise in MOS transistors saturationlinear Simulations (HSPICE) NLEV=3 BSIM3v3 (NIMOD=2) 1. Thermal noise of channel Measurments – short channel effects (2-10x): ( velocity saturation, hot electrons) 2. Flicker noise Simulations (HSPICE) NLEV=2, 3 Measurments – short channel effects ( hot electrons, RST noise) BSIM3v3 (NIMOD=2)

2004 CROSSTALK Transfer: – common supply lines: parasitic inductance and resistance (V ind =LdI/dt) – common substrate: (substrate  epi, V T =f(V SB ), g mb ) Effects for analogue blocks: switching noise, oscillation etc. Minimisation: – reducing the noise generation, – increasing the immunity of analogue part, – isolation techniques. GENERATION TRANSFER EFFECT DIGITAL BLOCKS ANALOG BLOCKS SILICON SUBSTRATE

2004 RANDOM MATCHING MATCHING - identically design devices have different parameters  P=P 1 -P 2 (  P/P) For MOS transistors: V T0, ,  CMOS 0.7  m -  (V T0 ) NMOS PMOS W/L=2  m/0.7  m 9.72 mV mV W/L=1500  m/1.5  m 0.31 mV 0.63 mV L W L W D Number of cases  P/P [%]

Matching  bias condition differences:  V T, ,  R 4. Symmetry in layout – bias, temperature, orientation, – common centroid geometry, unit cells, – surrounding, metal coverage 2. Reduce sensitivity - proper configuration (Kv  Ci/Cj) 3. Monte-Carlo analysis using HSPICE (matching data for given technology) a) b)

2004 data, control Silicon strip detector Integrated circuit PC computer 100  m current pulses X-rays Signal 10x smaller Stochastic High Energy Physics Key system issues : – fully parallel signal processing for all channels. – only binary information (yes/no) is extracted from each strip. – data from each channel must be stored in the local buffer for the whole measurement period. X-ray imaging using silicon strip detectors

2004 RX64DTH - fully integrated 64-channel chip (CMOS 0.8  m process ) RX64DTH consists of: –64 front-end channels (preamplifier, shaper, two discriminators) –128 pseudo-random counters (20-bit) –internal DACs: two 8-bit threshold setting and and three 5-bit for bias –internal calibration circuit (square wave 1mV-30 mV) –control logic –I/O circuit (interface to external bus) 3700  6500  m 2

2004 Single analogue channel Key design issues: – low noise (ENC  200 el. rms, sensor ) – low power (3-5 mW/channel) – relatively fast shaping (Tp = 0.5  1  s) – uniformity from channel to channel (gain, offset, noise) – immunity to switching noise 0 1 t V t V Preamplifier Shaper Discriminators  C2 C5 C3 t V TpTp V T-HIGH V T-LOW 0

2004 Preamplifier & shaper 1. POWER 2. PEAKING TIME 3. SENSOR 4. PSRR, stability, matching. LIMITATIONS SENSOR: C det I det R bias t V TpTp Minimum of noise (transistor dimensions, bias) Hand calculation Simulation HSPICE Other transistors Measurements (bias, temp., Tp) M1: 500/1 M5: 2/120 M4: 100/10 Id = 500  A t V DAC currents – IFED – IFEDSH – ICAS

2004 ENCversus Peaking Time ENC – total noise ENC W – white voltage noise ENC f – 1/f voltage noise ENC i – white current noise t V TpTp Noise types T P [  s] Peaking time T P Optimal  the lowest noise Fast Front-end  increasing noise

2004 Discriminator – offsets, crosstalk AC coupling differential stage (CMRR) hysteresis power supply lines, guard rings 0 1 t V TpTp V T-HIGH V T-LOW 0 1

2004 Pseudo-random counters – 20 bit counters (large dynamic range of the image) – small layout area (only 8 transistor per bit) – 128 counters are grouped in the 8 blocks of 16 counters each (8 bit I/O bus to minimize the dead time)

2004 I/O circuits: LVDS standard (command, clock) 8-bit data bus (tristate), 3-bit address (up to 8 chips) Functionality & testability Calibration circuits: Q inj =Ct  V cal (  500 el el) Internal DACs: threshold setting, gain, peaking time 2 x threshold 8-bit 3 x bias 5-bit 1 x calibration 4-bit 6 dacs Command codeAction 000SetGateStatus 001ReadoutDestructive 010ReadoutNonDestructive 011CalibrationPulseLong 100CalibrationPulseShort 101CounterPulse 110LoadDac 111Unused code

2004 LAYOUT - floor plan, bias lines, pads Isolation techniques – reduce inductance (separate bias line,pads), – floor plan, bias lines – keep “clean” substrate – LVDS – RC filters – guard rings, shielding 10 9 Floor plan – preamplifier & shaper – discriminators – counters & IOs – digital outputs – control logic – calibration – bias DACs Digital guard ring Digital ground Analog guard ring Analog ground Middle ring

2004 Difference [mV] Difference [LSB] Dac value [LSB] Silicon: 3,67eV/el Window – threshold DAC’s Dac value [LSB] – two independent DACs – common centroid matrix – mixed matrices – matching problem – need software correction Difference between DAC HIGH and LOW 7 LSB

2004 IFED [LSB] IFED SH [LSB] ICAS [LSB] Temp.Gain [  V/el] (  ) Offset [mV] (  ) ENC [el. rms] 8 keV ENC [el. rms] 20 keV ENC [el. rms] Cal room57.63 (0.34) (1.91) 248 (6.1) 232 (7.7) 232 (24) 32 room56.79 (0.34) (1.91) 251 (6.1) 234 (8.5) 32 40room219 (24) 32 48room56.30 (0.37) (1.96) 233 (7.5) 217 (7.3) 213 (15) 32 56room203 (13) ° ° ° °163 Noise versus ICAS & Temp Source Pu238 + Cu Vdet = 130 V Vdd = 4.0 V Vddd = 4.0 V Peltier element for temp. Controled Temp. VTH = 255 VTL = scan VTH = scan VTL = 255

2004 IFED [LSB] IFEDSH [LSB] ICAS [LSB] Temp.Gain [  V/el] (  ) Offset [mV] (  ) ENC [el. rms] 8 keV ENC [el. rms] 20 keV °54.86 (0.39) (1.33) (5.1) (16.7) °54.85 (0.44) (1.09) (6.6) (8.22) °54.86 (0.45) (1.26) (8.5) (9.47) °54.84 (0.49) (1.30) (9.2) (9.46) Noise versus IFED – gain & offset const – window is 5 LSB – Peltier element pin-holes in detector  leakeage current  fast noise increasing } dead channels because out of operating point rescue increase IFED but...

2004 Simulation: T P & Gain as a function of IFEDSH shaper output  TPTP Impulse height T P = 0.7 – 1  s Impulse fall ends  4  s  200 kHz

2004 IFED [LSB] IFEDSH [LSB] ICAS [LSB] Temp.Gain [  V/el] (  ) Offset [mV] (  ) ENC [el. rms] 20 keV °80.54 (0.57) -0.8 (0.9) (4.91) °63.74 (0.52) (1.11) (8.69) °54.85 (0.44) (1.09) (8.22) °50.2 (0.36) (1.24) (9.42) °47.64 (0.35) (1.39) (8.92) °45.52 (0.32) (1.22) (9.36) Gain, Offset & Noise versus IFEDSH – window is 5 LSB – Peltier element min (fast) max (slow) TPTP peaking time

Multichannel mix-mode ASIC : — critical parameters connected together — looking for a golden solution 2.Software corrections : — DACs problem — differences between the chips 3.Noise controling : IFED – better detector  lower noise ICAS – the highier the beter (cooling ?) IFEDSH– high gain gives low noise and speed 4.To do – measurements — speed — uniformity in 6-chip module Summary