1 Lecture 5 Introduction to Hypothesis Tests Slides available from Statistics & SPSS page of www.gpryce.com www.gpryce.com Social Science Statistics Module.

Slides:



Advertisements
Similar presentations
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Advertisements

Inference Sampling distributions Hypothesis testing.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 9 Hypothesis Testing Developing Null and Alternative Hypotheses Developing Null and.
Chapter 10 Section 2 Hypothesis Tests for a Population Mean
1 1 Slide Hypothesis Testing Chapter 9 BA Slide Hypothesis Testing The null hypothesis, denoted by H 0, is a tentative assumption about a population.
EPIDEMIOLOGY AND BIOSTATISTICS DEPT Esimating Population Value with Hypothesis Testing.
1/55 EF 507 QUANTITATIVE METHODS FOR ECONOMICS AND FINANCE FALL 2008 Chapter 10 Hypothesis Testing.
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 9-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 8-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
1 1 Slide © 2006 Thomson/South-Western Chapter 9 Hypothesis Testing Developing Null and Alternative Hypotheses Developing Null and Alternative Hypotheses.
Ch. 9 Fundamental of Hypothesis Testing
Chapter 8 Introduction to Hypothesis Testing
Definitions In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test is a standard procedure for testing.
Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc Chapter 11 Introduction to Hypothesis Testing.
1 Lecture 2 Calculating z Scores Quantitative Methods Module I Gwilym Pryce
Chapter 10 Hypothesis Testing
Business Statistics - QBM117 Introduction to hypothesis testing.
Confidence Intervals and Hypothesis Testing - II
Fundamentals of Hypothesis Testing: One-Sample Tests
Section 9.1 Introduction to Statistical Tests 9.1 / 1 Hypothesis testing is used to make decisions concerning the value of a parameter.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap th Lesson Introduction to Hypothesis Testing.
Introduction to Statistical Inferences Inference means making a statement about a population based on an analysis of a random sample taken from the population.
Lecture 3: Review Review of Point and Interval Estimators
Chapter 9 Large-Sample Tests of Hypotheses
Chapter 10 Hypothesis Testing
October 15. In Chapter 9: 9.1 Null and Alternative Hypotheses 9.2 Test Statistic 9.3 P-Value 9.4 Significance Level 9.5 One-Sample z Test 9.6 Power and.
1 Introduction to Hypothesis Testing. 2 What is a Hypothesis? A hypothesis is a claim A hypothesis is a claim (assumption) about a population parameter:
1 Hypothesis testing can be used to determine whether Hypothesis testing can be used to determine whether a statement about the value of a population parameter.
Lecture 7 Introduction to Hypothesis Testing. Lecture Goals After completing this lecture, you should be able to: Formulate null and alternative hypotheses.
STA Statistical Inference
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved OPIM 303-Lecture #7 Jose M. Cruz Assistant Professor.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 Lecture 3: Introduction to Confidence Intervals Social Science Statistics I Gwilym Pryce
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 Lecture 6 Hypothesis Testing II: Proportions and 2 Populations Graduate School Quantitative Research Methods Gwilym Pryce
Agresti/Franklin Statistics, 1 of 122 Chapter 8 Statistical inference: Significance Tests About Hypotheses Learn …. To use an inferential method called.
1 Lecture note 4 Hypothesis Testing Significant Difference ©
Lecture 17 Dustin Lueker.  A way of statistically testing a hypothesis by comparing the data to values predicted by the hypothesis ◦ Data that fall far.
Lecture 16 Section 8.1 Objectives: Testing Statistical Hypotheses − Stating hypotheses statements − Type I and II errors − Conducting a hypothesis test.
1 Chapter 9 Hypothesis Testing. 2 Chapter Outline  Developing Null and Alternative Hypothesis  Type I and Type II Errors  Population Mean: Known 
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Fundamentals of Hypothesis Testing: One-Sample Tests Statistics.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 8 Hypothesis Testing.
Chap 8-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 8 Introduction to Hypothesis.
Introduction to the Practice of Statistics Fifth Edition Chapter 6: Introduction to Inference Copyright © 2005 by W. H. Freeman and Company David S. Moore.
Lecture 9 Chap 9-1 Chapter 2b Fundamentals of Hypothesis Testing: One-Sample Tests.
Lecture 18 Dustin Lueker.  A way of statistically testing a hypothesis by comparing the data to values predicted by the hypothesis ◦ Data that fall far.
Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall 9-1 σ σ.
Lecture 17 Dustin Lueker.  A way of statistically testing a hypothesis by comparing the data to values predicted by the hypothesis ◦ Data that fall far.
Chap 8-1 Fundamentals of Hypothesis Testing: One-Sample Tests.
Ex St 801 Statistical Methods Inference about a Single Population Mean.
Introduction Suppose that a pharmaceutical company is concerned that the mean potency  of an antibiotic meet the minimum government potency standards.
© Copyright McGraw-Hill 2004
_ z = X -  XX - Wow! We can use the z-distribution to test a hypothesis.
1 Definitions In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test is a standard procedure for testing.
Monday, October 21 Hypothesis testing using the normal Z-distribution. Student’s t distribution. Confidence intervals.
Psych 230 Psychological Measurement and Statistics Pedro Wolf October 21, 2009.
Uncertainty and confidence Although the sample mean,, is a unique number for any particular sample, if you pick a different sample you will probably get.
Chapter 9 Introduction to the t Statistic
Ex St 801 Statistical Methods Part 2 Inference about a Single Population Mean (HYP)
Chapter 9 -Hypothesis Testing
Slides by JOHN LOUCKS St. Edward’s University.
Unit 5 – Chapters 10 and 12 What happens if we don’t know the values of population parameters like and ? Can we estimate their values somehow?
Chapter 5 STATISTICAL INFERENCE: ESTIMATION AND HYPOTHESES TESTING
When we free ourselves of desire,
P-value Approach for Test Conclusion
Social Science Statistics Module I Gwilym Pryce
Statistical inference
Lecture 5 Introduction to Hypothesis tests
Testing Hypotheses about a Population Proportion
Presentation transcript:

1 Lecture 5 Introduction to Hypothesis Tests Slides available from Statistics & SPSS page of Social Science Statistics Module I Gwilym Pryce

Notices: Register Class Reps and Staff Student committee.

Aims & Objectives Aim –To introduce hypothesis testing Objectives –By the end of this session, students should be able to: Understand the 4 steps of hypothesis testing Run hypothesis test on a mean from a large sample; Run hypothesis test on a mean from a small sample;

Plan: 1. Statistical Significance 2. The four steps of hypothesis testing 3. Hypotheses about the population mean –3.1 when you have large samples –3.2 when you have small samples

1. Significance Does not refer to importance but to “real differences in fact” between our observed sample mean and our assumption about the population mean P = significance level = chances of our observed sample mean occurring given that our assumption about the population (denoted by “H 0 ”) is true. So if we find that this probability is small, it might lead us to question our assumption about the population mean.

I.e. if our sample mean is a long way from our assumed population mean then it is: –either a freak sample –or our assumption about the population mean is wrong. If we draw the conclusion that it is our assumption re  that is wrong and reject H 0 then we have to bear in mind that there is a chance that H 0 was in fact true. In other words, when P = 0.05 every twenty times we reject H 0, then on one of those occasions we would have rejected H 0 when it was in fact true.

Obviously, as the sample mean moves further away from our assumption (H 0 ) about the population mean, we have stronger evidence that H 0 is false. If P is very small, say 0.001, then there is only 1 chance in a thousand of our observed sample mean occurring if H 0 is true. –This also means that if we reject H 0 when P = 0.001, then there is only one in a thousand chance that we have made a mistake (I.e. that we have been guilty of a “Type I error”)

There is a tradition (initiated by English scientist R. A. Fisher ) of rejecting H 0 if the probability of incorrectly rejecting it is  –If P  0.05 then we say that H 0 can be rejected at the 5% significance level. –If P > 0.05, then, argued Fisher, the chances of incorrectly rejecting H 0 are too high to allow us to do so. the probability of a sample mean at least as extreme as our observed value occurring, will be determined not just by the difference between our assumed value of , but also by the standard deviation of the distribution and the size of our sample.

Type I and Type II errors: P = significance level = chances of incorrectly rejecting H 0 when it is in fact true. –Called a “Type I error” –So sig = Pr(Type I error) = Pr(false rejection) If we accept H 0 when in fact the alternative hypothesis is true –Called a “Type II error”. On this course we shall be concerned only with Type I errors.

2. The four steps of hypothesis testing Last week we looked at confidence intervals: –We established the range of values of the population mean for a given level of confidence E.g. we are 90% confident that population mean age of HoHs in repossessed dwellings in the Great Depression lay between and years (s = 20). Based on a sample of 200 with mean = 34.5yrs. But what if we want to use our sample to test a specific hypothesis we may have about the population mean? E.g. does  = 30 years? –If  does = 30 years, then how likely are we to select a sample with a mean as extreme as 34.5 years? –I.e. 4.5 years more or 4.5 years less than the pop mean?

One tailed test: P = how likely we are to select a sample with mean age at least as great as 34.5?

How do we find the proportion of sample means greater than 34.5? Because all sampling distributions for the mean (assuming large n) are normal, we can convert points on them to the standard normal curve –e.g. for 34.5: z = ( )/(20/  200) = 4.5 / 1.4 = 3.2

Two tailed test:

3. Steps to Hypothesis tests: 1. Specify null and alternative hypotheses and say whether it’s a two, lower, or upper tailed test. 2. Specify threshold significance level  and appropriate test statistic formula 3. Specify decision rule (reject H 0 if P <  ) 4. Compute P and state conclusion.

P values for one and two tailed tests: Use diagrams to explain how we know the following are true: –Upper Tail Test: population mean > specified value H 1 :  >  0 then P = Prob( z > z i ) –Lower Tail Test: population mean < specified value H 1 :  <  0 then P = Prob( z < z i ) –Two Tail Test: population mean  specified value H 1 :    0 then P = 2xProb( z > |z i |)

E.g. The obesity threshold for men of a particular height is defined as weighing over 187lbs; mean weight of men in your sample with this height is 190.5lbs, sd = 13.7lbs, n = 94. Are the men in your sample typically obese? Test the hypothesis that the average man in the population is obese. How do we write Step 1? Because H 1 :  >  0 then P = Prob( z > z i ) So this is an Upper tailed test & we write: H 0 :  = 187lbs H 1 :  > 187lbs

How do we write Step 2? (  and appropriate test statistic formula ) Large sample

How do we write Step 3?

How do we write Step 4?

The upper tail significance level is given by SIGZ_UTL = What can we conclude from this?

eg Test the hypothesis that male super heroes/villains tend to be c. six foot tall. 1 st you need to convert scale: 6ft = cm 2 nd you need to run descriptive stats on height to get the n, x-bar, and s: n = 29 xbar = cm s = 8.701

H_L1M n=(29) x_bar=(181.72) m=(182.88) s=(8.701). Compare this output with that of the large sample 95% confidence interval & interpret:

Hypotheses about the population mean when you have small samples This is exactly the same as the large sample case, except that one uses the t-distribution provided that x is normally distributed. Many statisticians use t rather than z even when the sample size is large since: (i) strictly speaking our approximation for the SE of the mean has a t rather than z distribution (ii) t tends towards the z distribution when n is large

E.g. re-run the hypothesis test on height of super heroes using a t test: H_S1M n=(29) x_bar=(181.72) m=(182.88) s=(8.701). How do the results differ, if at all? –N.B. the t-distribution tends to have fatter tails The smaller the sample, the fatter the tails become.

Reading & Exercises: Confidence Intervals: –M&M section 6.1 and exercises for 6.1 (odd numbers have answers at the back) Tests of Significance: –M&M section 6.2 and exercises for 6.2 Use and Abuse of Tests: –M&M section 6.3 and exercises for 6.3 *Power and inference as a Decision –Type I & II errors etc. –*optional