Normal Probability Distribution

Slides:



Advertisements
Similar presentations
BUS 220: ELEMENTARY STATISTICS Chapter 6: Discrete Probability Distribution.
Advertisements

Continuous Random Variables and the Central Limit Theorem
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin The Normal Probability Distribution Chapter 7.
Continuous Probability Distributions Chapter 07 Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin The Normal Probability Distribution Chapter 7.
Continuous Probability Distributions Chapter 07 McGraw-Hill/Irwin Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved.
Random Variables and Probability Distributions
Continuous Probability Distributions Chapter 7 Copyright © 2011 by the McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
Sections 5.1 and 5.2 Finding Probabilities for Normal Distributions.
Normal Distribution * Numerous continuous variables have distribution closely resemble the normal distribution. * The normal distribution can be used to.
Ka-fu Wong © 2003 Chap 7- 1 Dr. Ka-fu Wong ECON1003 Analysis of Economic Data.
The Normal Probability Distribution
© 2012 McGraw-Hill Ryerson Limited1 © 2009 McGraw-Hill Ryerson Limited.
Continuous Probability Distributions
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Continuous Probability Distributions Chapter 7.
Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
Irwin/McGraw-Hill © The McGraw-Hill Companies, Inc., 2000 LIND MASON MARCHAL 1-1 Chapter Six The Normal Probability Distribution GOALS When you have completed.
Continuous Probability Distributions
Discrete and Continuous Random Variables Continuous random variable: A variable whose values are not restricted – The Normal Distribution Discrete.
Chapter 13 Statistics © 2008 Pearson Addison-Wesley. All rights reserved.
Ch 7 Continuous Probability Distributions
7.2 Confidence Intervals When SD is unknown. The value of , when it is not known, must be estimated by using s, the standard deviation of the sample.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin The Normal Probability Distribution and the Central Limit Theorem Chapter 7&8.
Continuous Random Variables Continuous Random Variables Chapter 6.
Bennie D Waller, Longwood University Probability.
© 2008 Pearson Addison-Wesley. All rights reserved Chapter 1 Section 13-5 The Normal Distribution.
Sumukh Deshpande n Lecturer College of Applied Medical Sciences
Chapter 6.1 Normal Distributions. Distributions Normal Distribution A normal distribution is a continuous, bell-shaped distribution of a variable. Normal.
Part III Taking Chances for Fun and Profit
Normal Curves and Sampling Distributions Chapter 7.
Normal Distributions.  Symmetric Distribution ◦ Any normal distribution is symmetric Negatively Skewed (Left-skewed) distribution When a majority of.
7- 1 Chapter Seven McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
Managerial Decision Making Facilitator: René Cintrón MBA / 510.
Bennie D Waller, Longwood University Statistics Bennie Waller Longwood University 201 High Street Farmville, VA
Discrete Probability Distributions Define the terms probability distribution and random variable. 2. Distinguish between discrete and continuous.
Discrete Probability Distributions Define the terms probability distribution and random variable. 2. Distinguish between discrete and continuous.
Copyright © 2004 by The McGraw-Hill Companies, Inc. All rights reserved THE Normal PROBABILITY DISTRIBUTION.
7- 1 Chapter Seven McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved.
Chapter 3 The Normal Distributions. Chapter outline 1. Density curves 2. Normal distributions 3. The rule 4. The standard normal distribution.
Has a single peak at the center. Unimodal. Mean, median and the mode are equal and located in the center of the curve. Symmetrical about the mean. Somewhat.
Unit 6 Section : Introduction to Normal Distributions and Standard Normal Distributions  A normal distribution is a continuous, symmetric, bell.
Homework Questions. Normal Distributions Normal Curve  Sometimes called the “Bell Curve”  Used to predict outcomes of many types of events (probabilities.
Continuous Probability Distributions Chapter 7 McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Continuous Probability Distributions Chapter 7.
1 Math 10 Part 4 Slides Continuous Random Variables and the Central Limit Theorem © Maurice Geraghty, 2015.
Continuous Probability Distributions Chapter 7 McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
PROBABILITY DISTRIBUTION. Probability Distribution of a Continuous Variable.
Objective: To find probability using standard normal distribution.
Continuous Probability Distributions
Continuous Probability Distributions
Continuous Probability Distributions
Chapter 6 Created by Bethany Stubbe and Stephan Kogitz.
Continuous Probability Distributions
Normal Probability Distribution
The Normal Probability Distribution
Normal Distributions.
Continuous Probability Distributions
Probability Distributions
Probability Distributions
Normal distribution, Central limit theory, and z scores
Continuous Probability Distributions
Descriptive Statistics: Describing Data
Continuous Probability Distributions
The Normal Probability Distribution
10-5 The normal distribution
Chapter 5 Normal Probability Distribution
Normal Probability Distribution
Continuous Probability Distributions
The Normal Probability Distribution
Presentation transcript:

Normal Probability Distribution

Normal Probability Distribution It is bell-shaped and has a single peak at the center of the distribution. It is symmetrical about the mean It is asymptotic: The curve gets closer and closer to the X-axis but never actually touches it. The location of a normal distribution is determined by the mean,, the dispersion or spread of the distribution is determined by the standard deviation,σ . The arithmetic mean, median, and mode are equal The total area under the curve is 1.00; half the area under the normal curve is to the right of this center point and the other half to the left of it Different Means and Standard Deviations Equal Means and Different Standard Deviations Different Means and Equal Standard Deviations Family of Distributions

The Standard Normal Probability Distribution The standard normal distribution is a normal distribution with a mean of 0 and a standard deviation of 1. It is also called the z distribution. A z-value is the signed distance between a selected value, designated X, and the population mean , divided by the population standard deviation, σ. The formula is:

The Normal Distribution – Example The weekly incomes of shift foremen in the glass industry follow the normal probability distribution with a mean of $1,000 and a standard deviation of $100. What is the z value for the income, let’s call it X, of a foreman who earns $1,100 per week? For a foreman who earns $900 per week?

The Empirical Rule - Example As part of its quality assurance program, the Autolite Battery Company conducts tests on battery life. For a particular D-cell alkaline battery, the mean life is 19 hours. The useful life of the battery follows a normal distribution with a standard deviation of 1.2 hours. Answer the following questions. About 68 percent of the batteries failed between what two values? About 95 percent of the batteries failed between what two values? Virtually all of the batteries failed between what two values?

Normal Distribution – Finding Probabilities EXAMPLE The mean weekly income of a shift foreman in the glass industry is normally distributed with a mean of $1,000 and a standard deviation of $100. What is the likelihood of selecting a foreman whose weekly income is between $1,000 and $1,100? Required probability is 0.3413

Normal Distribution – Finding Probabilities (Example 2) Refer to the information regarding the weekly income of shift foremen in the glass industry. The distribution of weekly incomes follows the normal probability distribution with a mean of $1,000 and a standard deviation of $100. What is the probability of selecting a shift foreman in the glass industry whose income is: Between $790 and $1,000? What is the probability of selecting a shift foreman in the glass industry whose income is: Between $840 and $1,200