1 Recursion. 2 A process by which a function calls itself repeatedly  Either directly. X calls X  Or cyclically in a chain. X calls Y, and Y calls X.

Slides:



Advertisements
Similar presentations
Starting Out with Java: From Control Structures through Objects
Advertisements

Recursive methods. Recursion A recursive method is a method that contains a call to itself Often used as an alternative to iteration when iteration is.
Fundamentals of Computer Science Lecture 14: Recursion Instructor: Evan Korth New York University.
Recursive Functions The Fibonacci function shown previously is recursive, that is, it calls itself Each call to a recursive method results in a separate.
Lesson 19 Recursion CS1 -- John Cole1. Recursion 1. (n) The act of cursing again. 2. see recursion 3. The concept of functions which can call themselves.
Chapter 10 Recursion Instructor: alkar/demirer. Copyright ©2004 Pearson Addison-Wesley. All rights reserved.10-2 Recursive Function recursive functionThe.
Chapter 17 Recursion. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Mathematical Definition: RunningSum(1)
Fundamentals of Computer Science Lecture 14: Recursion Instructor: Evan Korth New York University.
Unit 181 Recursion Definition Recursive Methods Example 1 How does Recursion work? Example 2 Problems with Recursion Infinite Recursion Exercises.
1 CSCD 300 Data Structures Recursion. 2 Proof by Induction Introduction only - topic will be covered in detail in CS 320 Prove: N   i = N ( N + 1.
Recursion. Learn about recursive definitions Explore the base case and the general case of a recursive definition Learn about recursive algorithms Lecture.
Recursion CS-240/CS341. What is recursion? a function calls itself –direct recursion a function calls its invoker –indirect recursion f f1 f2.
Recursive Algorithms Nelson Padua-Perez Chau-Wen Tseng Department of Computer Science University of Maryland, College Park.
Recursion A recursive function is a function that calls itself either directly or indirectly through another function. The problems that can be solved.
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Starting Out with Java: Early Objects Third Edition by Tony Gaddis Chapter.
 2000 Prentice Hall, Inc. All rights reserved. Chapter 5 – Recursive Funtions From Deitel’s “C” Book 5.13Recursion 5.14Example Using Recursion: The Fibonacci.
Chapter 14: Recursion Starting Out with C++ Early Objects
 2003 Prentice Hall, Inc. All rights reserved. 1 Functions and Recursion Outline Function Templates Recursion Example Using Recursion: The Fibonacci Series.
1 Storage Classes, Scope, and Recursion Lecture 6.
© 2010 Pearson Addison-Wesley. All rights reserved. Addison Wesley is an imprint of Chapter 15: Recursion Starting Out with Java: From Control Structures.
Copyright © 2011 Pearson Education, Inc. Starting Out with Java: Early Objects Fourth Edition by Tony Gaddis Chapter 14: Recursion.
15-1 Chapter-18: Recursive Methods –Introduction to Recursion –Solving Problems with Recursion –Examples of Recursive Methods.
Chapter 9: Recursion1 CHAPTER 9 RECURSION. Recursion  Concept of recursion  A recursive: Benefit and Cost  Comparison : Iterative and recursive functions.
Comp 245 Data Structures Recursion. What is Recursion? A problem solving concept which can be used with languages that support the dynamic allocation.
Recursion Textbook chapter Recursive Function Call a recursive call is a function call in which the called function is the same as the one making.
Sudeshna Sarkar, IIT Kharagpur 1 Functions : Recursion Lecture
Computer Science Department Data Structure & Algorithms Lecture 8 Recursion.
Chapter 14 Recursion. Chapter Objectives Learn about recursive definitions Explore the base case and the general case of a recursive definition Learn.
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved. Functions (Recursion) Outline 5.13Recursion 5.14Example.
Reading – Chapter 10. Recursion The process of solving a problem by reducing it to smaller versions of itself Example: Sierpinski’s TriangleSierpinski’s.
Recursion CMPE231, Spring 2012 Aleaxander G. Chefranov 1.
Review Introduction to Searching External and Internal Searching Types of Searching Linear or sequential search Binary Search Algorithms for Linear Search.
Chapter 8 Recursion Modified.
Recursion Part 3 CS221 – 2/27/09. Recursion A function calls itself directly: Test() { … Test(); … }
Dale Roberts CSCI N305 Functions Recursion Department of Computer and Information Science, School of Science, IUPUI.
Edited by Malak Abdullah Jordan University of Science and Technology Data Structures Using C++ 2E Chapter 6 Recursion.
Data Structures R e c u r s i o n. Recursive Thinking Recursion is a problem-solving approach that can be used to generate simple solutions to certain.
Java Programming: Guided Learning with Early Objects Chapter 11 Recursion.
Functions-Recall 1. 2 Parameter passing & return void main() { int x=10, y=5; printf (“M1: x = %d, y = %d\n”, x, y); interchange (x, y); printf (“M2:
Sudeshna Sarkar, IIT Kharagpur 1 Functions : Recursion Lecture
A Brief Introduction to Recursion. Recursion Recursive methods … –methods that call themselves! –They can only solve a base case –So, you divide a problem.
C++ Programming Lecture 12 Functions – Part IV
1 Recursion Recursive function: a function that calls itself (directly or indirectly). Recursion is often a good alternative to iteration (loops). Its.
Maitrayee Mukerji. Factorial For any positive integer n, its factorial is n! is: n! = 1 * 2 * 3 * 4* ….* (n-1) * n 0! = 1 1 ! = 1 2! = 1 * 2 = 2 5! =
chap10 Chapter 10 Recursion chap10 2 Recursive Function recursive function The recursive function is a kind of function that calls.
Recursion by Ender Ozcan. Recursion in computing Recursion in computer programming defines a function in terms of itself. Recursion in computer programming.
1 CSC 143 Recursion [Reading: Chapter 17]. 2 Recursion  A recursive definition is one which is defined in terms of itself.  Example:  Sum of the first.
1 Data Structures CSCI 132, Spring 2016 Notes 16 Tail Recursion.
Chapter 9 Recursion. Copyright ©2004 Pearson Addison-Wesley. All rights reserved.10-2 Recursive Function recursive functionThe recursive function is –a.
Recursion.
Programming and Data Structures
Chapter Topics Chapter 16 discusses the following main topics:
Recursion CENG 707.
Chapter 15 Recursion.
Introduction to Recursion
Chapter 10 Recursion Instructor: Yuksel / Demirer.
Chapter 15 Recursion.
CS11001/CS11002 Programming and Data Structures (PDS) (Theory: 3-0-0)
Recursion "To understand recursion, one must first understand recursion." -Stephen Hawking.
Recursion Chapter 11.
CS201: Data Structures and Discrete Mathematics I
Recursion Data Structures.
Functions Recursion CSCI 230
7.Recursion Recursion is the name given for expression anything in terms of itself. Recursive function is a function which calls itself until a particular.
Stack Frames and Functions
Module 1-10: Recursion.
Recursion When performing a repetitive task either: a loop recursion
Java Programming: Chapter 9: Recursion Second Edition
CSC 143 Recursion.
Dr. Sampath Jayarathna Cal Poly Pomona
Presentation transcript:

1 Recursion

2 A process by which a function calls itself repeatedly  Either directly. X calls X  Or cyclically in a chain. X calls Y, and Y calls X Used for repetitive computations in which each action is stated in terms of a previous result fact(n) = n * fact (n-1)

3 Contd. For a problem to be written in recursive form, two conditions are to be satisfied:  It should be possible to express the problem in recursive form Solution of the problem in terms of solution of the same problem on smaller sized data  The problem statement must include a stopping condition fact(n) = 1, if n = 0 = n * fact(n-1), if n > 0 Stopping condition Recursive definition

4 Examples:  Factorial: fact(0) = 1 fact(n) = n * fact(n-1), if n > 0  GCD: gcd (m, m) = m gcd (m, n) = gcd (m%n, n), if m > n gcd (m, n) = gcd (n, n%m), if m < n  Fibonacci series (1,1,2,3,5,8,13,21,….) fib (0) = 1 fib (1) = 1 fib (n) = fib (n-1) + fib (n-2), if n > 1

5 Factorial long int fact (int n) { if (n == 1) return (1); else return (n * fact(n-1)); }

6 Factorial Execution long int fact (int n) { if (n = = 1) return (1); else return (n * fact(n-1)); }

7 Factorial Execution fact(4) long int fact (int n) { if (n = = 1) return (1); else return (n * fact(n-1)); }

8 Factorial Execution fact(4) if (4 = = 1) return (1); else return (4 * fact(3)); long int fact (int n) { if (n = = 1) return (1); else return (n * fact(n-1)); }

9 Factorial Execution fact(4) if (4 = = 1) return (1); else return (4 * fact(3)); if (3 = = 1) return (1); else return (3 * fact(2)); long int fact (int n) { if (n = = 1) return (1); else return (n * fact(n-1)); }

10 Factorial Execution fact(4) if (4 = = 1) return (1); else return (4 * fact(3)); if (3 = = 1) return (1); else return (3 * fact(2)); if (2 = = 1) return (1); else return (2 * fact(1)); long int fact (int n) { if (n = = 1) return (1); else return (n * fact(n-1)); }

11 Factorial Execution if (1 = = 1) return (1); fact(4) if (4 = = 1) return (1); else return (4 * fact(3)); if (3 = = 1) return (1); else return (3 * fact(2)); if (2 = = 1) return (1); else return (2 * fact(1)); long int fact (int n) { if (n = = 1) return (1); else return (n * fact(n-1)); }

12 Factorial Execution if (1 = = 1) return (1); fact(4) if (4 = = 1) return (1); else return (4 * fact(3)); if (3 = = 1) return (1); else return (3 * fact(2)); if (2 = = 1) return (1); else return (2 * fact(1)); 1 long int fact (int n) { if (n = = 1) return (1); else return (n * fact(n-1)); }

13 Factorial Execution if (1 = = 1) return (1); fact(4) if (4 = = 1) return (1); else return (4 * fact(3)); if (3 = = 1) return (1); else return (3 * fact(2)); if (2 = = 1) return (1); else return (2 * fact(1)); 1 2 long int fact (int n) { if (n = = 1) return (1); else return (n * fact(n-1)); }

14 Factorial Execution if (1 = = 1) return (1); fact(4) if (4 = = 1) return (1); else return (4 * fact(3)); if (3 = = 1) return (1); else return (3 * fact(2)); if (2 = = 1) return (1); else return (2 * fact(1)); 1 2 long int fact (int n) { if (n = = 1) return (1); else return (n * fact(n-1)); }

15 Factorial Execution if (1 = = 1) return (1); fact(4) if (4 = = 1) return (1); else return (4 * fact(3)); if (3 = = 1) return (1); else return (3 * fact(2)); if (2 = = 1) return (1); else return (2 * fact(1)); long int fact (int n) { if (n = = 1) return (1); else return (n * fact(n-1)); }

16 Factorial Execution if (1 = = 1) return (1); fact(4) if (4 = = 1) return (1); else return (4 * fact(3)); if (3 = = 1) return (1); else return (3 * fact(2)); if (2 = = 1) return (1); else return (2 * fact(1)); long int fact (int n) { if (n = = 1) return (1); else return (n * fact(n-1)); }

17 Look at the variable addresses (a slightly different program) ! void main() { int x,y; scanf("%d",&x); y = fact(x); printf ("M: x= %d, y = %d\n", x,y); } int fact(int data) { int val = 1; printf("F: data = %d, &data = %u \n &val = %u\n", data, &data, &val); if (data>1) val = data*fact(data-1); return val; } 4 F: data = 4, &data = &val = F: data = 3, &data = &val = F: data = 2, &data = &val = F: data = 1, &data = &val = M: x= 4, y = 24 Output

18 Fibonacci recurrence: fib(n) = 1 if n = 0 or 1; = fib(n – 2) + fib(n – 1) otherwise; int fib (int n){ if (n == 0 or n == 1) return 1; [BASE] return fib(n-2) + fib(n-1) ; [Recursive] } Fibonacci Numbers

19 fib (5) fib (3)fib (4) fib (1) fib (2)fib (1)fib (2) fib (0) fib (3) fib (1) fib (2) fib (0) fib (1) Fibonacci recurrence: fib(n) = 1 if n = 0 or 1; = fib(n – 2) + fib(n – 1) otherwise; int fib (int n){ if (n == 0 || n == 1) return 1; return fib(n-2) + fib(n-1) ; }

20 fib (5) fib (3)fib (4) fib (1) fib (2)fib (1)fib (2) fib (0) fib (3) fib (1) fib (2) fib (0) fib (1) Fibonacci recurrence: fib(n) = 1 if n = 0 or 1; = fib(n – 2) + fib(n – 1) otherwise; int fib (int n){ if (n == 0 || n == 1) return 1; return fib(n-2) + fib(n-1) ; } fib.c

21 fib (5) fib (3)fib (4) fib (1) fib (2)fib (1)fib (2) fib (0) fib (3) fib (1) fib (2) fib (0) fib (1) Fibonacci recurrence: fib(n) = 1 if n = 0 or 1; = fib(n – 2) + fib(n – 1) otherwise; int fib (int n){ if (n==0 || n==1) return 1; return fib(n-2) + fib(n-1) ; }

22 int sumSquares (int m, int n) { int middle ; if (m == n) return m*m; else { middle = (m+n)/2; return sumSquares(m,middle) + sumSquares(middle+1,n); } Sum of Squares

23 Annotated Call Tree sumSquares(5,10) sumSquares(5,7) sumSquares(5,10)sumSquares(8,10) sumSquares(5,6) sumSquares(7,7) sumSquares(8,9) sumSquares(10,10) sumSquares(5,5) sumSquares(6,6)sumSquares(8,8) sumSquares(9,9)

24 Towers of Hanoi Problem LEFT CENTERRIGHT

25 Initially all the disks are stacked on the LEFT pole Required to transfer all the disks to the RIGHT pole  Only one disk can be moved at a time.  A larger disk cannot be placed on a smaller disk CENTER pole is used for temporary storage of disks

26 Recursive statement of the general problem of n disks  Step 1: Move the top (n-1) disks from LEFT to CENTER  Step 2: Move the largest disk from LEFT to RIGHT  Step 3: Move the (n-1) disks from CENTER to RIGHT

27 Tower of Hanoi ABC

28 Tower of Hanoi ABC

29 Tower of Hanoi ABC

30 Tower of Hanoi ABC

31 Towers of Hanoi function void towers (int n, char from, char to, char aux) { /* Base Condition */ if (n==1) { printf (“Disk 1 : %c  &c \n”, from, to) ; return ; } /* Recursive Condition */ towers (n-1, from, aux, to) ; ……………………. }

32 Towers of Hanoi function void towers (int n, char from, char to, char aux) { /* Base Condition */ if (n==1) { printf (“Disk 1 : %c  &c \n”, from, to) ; return ; } /* Recursive Condition */ towers (n-1, from, aux, to) ; printf (“Disk %d : %c  %c\n”, n, from, to) ; ……………………. }

33 Towers of Hanoi function void towers (int n, char from, char to, char aux) { /* Base Condition */ if (n==1) { printf (“Disk 1 : %c  %c \n”, from, to) ; return ; } /* Recursive Condition */ towers (n-1, from, aux, to) ; printf (“Disk %d : %c  %c\n”, n, from, to) ; towers (n-1, aux, to, from) ; }

34 TOH runs void towers(int n, char from, char to, char aux) { if (n==1) { printf ("Disk 1 : %c -> %c \n", from, to) ; return ; } towers (n-1, from, aux, to) ; printf ("Disk %d : %c -> %c\n", n, from, to) ; towers (n-1, aux, to, from) ; } void main() { int n; scanf("%d", &n); towers(n,'A',‘C',‘B'); } 3 Disk 1 : A -> C Disk 2 : A -> B Disk 1 : C -> B Disk 3 : A -> C Disk 1 : B -> A Disk 2 : B -> C Disk 1 : A -> C Output

35 More TOH runs void towers(int n, char from, char to, char aux) { if (n==1) { printf ("Disk 1 : %c -> %c \n", from, to) ; return ; } towers (n-1, from, aux, to) ; printf ("Disk %d : %c -> %c\n", n, from, to) ; towers (n-1, aux, to, from) ; } void main() { int n; scanf("%d", &n); towers(n,'A',‘C',‘B'); } 4 Disk 1 : A -> B Disk 2 : A -> C Disk 1 : B -> C Disk 3 : A -> B Disk 1 : C -> A Disk 2 : C -> B Disk 1 : A -> B Disk 4 : A -> C Disk 1 : B -> C Disk 2 : B -> A Disk 1 : C -> A Disk 3 : B -> C Disk 1 : A -> B Disk 2 : A -> C Disk 1 : B -> C Output

36 fib (5) fib (3)fib (4) fib (1) fib (2)fib (1)fib (2) fib (0) fib (3) fib (1) fib (2) fib (0) fib (1) Relook at recursive Fibonacci: Not efficient !! Same sub-problem solved many times. int fib (int n){ if (n==0 || n==1) return 1; return fib(n-2) + fib(n-1) ;} How many calls? How many additions?

37 Iterative Fib int fib( int n) { int i=2, res=1, m1=1, m2=1; if (n ==0 || n ==1) return res; for ( ; i<=n; i++) { res = m1 + m2; m2 = m1; m1 = res; } return res; } void main() { int n; scanf("%d", &n); printf(" Fib(%d) = %d \n", n, fib(n)); } Much Less Computation here! (How many additions?)

38 An efficient recursive Fib int Fib ( int, int, int, int); void main() { int n; scanf("%d", &n); if (n == 0 || n ==1) printf("F(%d) = %d \n", n, 1); else printf("F(%d) = %d \n", n, Fib(1,1,n,2)); } int Fib(int m1, int m2, int n, int i) { int res; if (n == i) res = m1+ m2; else res = Fib(m1+m2, m1, n, i+1); return res; } Much Less Computation here! (How many calls/additions?)

39 Run int Fib ( int, int, int, int); void main() { int n; scanf("%d", &n); if (n == 0 || n ==1) printf("F(%d) = %d \n", n, 1); else printf("F(%d) = %d \n", n, Fib(1,1,n,2)); } int Fib(int m1, int m2, int n, int i) { int res; printf("F: m1=%d, m2=%d, n=%d, i=%d\n", m1,m2,n,i); if (n == i) res = m1+ m2; else res = Fib(m1+m2, m1, n, i+1); return res; } $./a.out 3 F: m1=1, m2=1, n=3, i=2 F: m1=2, m2=1, n=3, i=3 F(3) = 3 $./a.out 5 F: m1=1, m2=1, n=5, i=2 F: m1=2, m2=1, n=5, i=3 F: m1=3, m2=2, n=5, i=4 F: m1=5, m2=3, n=5, i=5 F(5) = 8 Output

40 Static Variables int Fib (int, int); void main() { int n; scanf("%d", &n); if (n == 0 || n ==1) printf("F(%d) = %d \n", n, 1); else printf("F(%d) = %d \n", n, Fib(n,2)); } int Fib(int n, int i) { static int m1, m2; int res, temp; if (i==2) {m1 =1; m2=1;} if (n == i) res = m1+ m2; else { temp = m1; m1 = m1+m2; m2 = temp; res = Fib(n, i+1); } return res; } Static variables remain in existence rather than coming and going each time a function is activated

41 Static Variables: See the addresses! 5 F: m1=1, m2=1, n=5, i=2 F: &m1= , &m2= F: &res= , &temp= F: m1=2, m2=1, n=5, i=3 F: &m1= , &m2= F: &res= , &temp= F: m1=3, m2=2, n=5, i=4 F: &m1= , &m2= F: &res= , &temp= F: m1=5, m2=3, n=5, i=5 F: &m1= , &m2= F: &res= , &temp= F(5) = 8 int Fib(int n, int i) { static int m1, m2; int res, temp; if (i==2) {m1 =1; m2=1;} printf("F: m1=%d, m2=%d, n=%d, i=%d\n", m1,m2,n,i); printf("F: &m1=%u, &m2=%u\n", &m1,&m2); printf("F: &res=%u, &temp=%u\n", &res,&temp); if (n == i) res = m1+ m2; else { temp = m1; m1 = m1+m2; m2 = temp; res = Fib(n, i+1); } return res; } Output

42 Recursion vs. Iteration Repetition  Iteration: explicit loop  Recursion: repeated function calls Termination  Iteration: loop condition fails  Recursion: base case recognized Both can have infinite loops Balance  Choice between performance (iteration) and good software engineering (recursion).

43 Every recursive program can also be written without recursion Recursion is used for programming convenience, not for performance enhancement Sometimes, if the function being computed has a nice recurrence form, then a recursive code may be more readable

44 How are function calls implemented? The following applies in general, with minor variations that are implementation dependent  The system maintains a stack in memory Stack is a last-in first-out structure Two operations on stack, push and pop  Whenever there is a function call, the activation record gets pushed into the stack Activation record consists of the return address in the calling program, the return value from the function, and the local variables inside the function

45 void main() { …….. x = gcd (a, b); …….. } int gcd (int x, int y) { …….. return (result); } Return Addr Return Value Local Variables Before callAfter call After return STACK Activation record

46 void main() { …….. x = ncr (a, b); …….. } int ncr (int n, int r) { return (fact(n)/ fact(r)/fact(n-r)); } LV1, RV1, RA1 Before callCall factncr returns int fact (int n) { ……… return (result); } 3 times LV1, RV1, RA1 fact returns LV1, RV1, RA1 LV2, RV2, RA2 Call ncr 3 times

47 What happens for recursive calls? What we have seen ….  Activation record gets pushed into the stack when a function call is made  Activation record is popped off the stack when the function returns In recursion, a function calls itself  Several function calls going on, with none of the function calls returning back Activation records are pushed onto the stack continuously Large stack space required

48  Activation records keep popping off, when the termination condition of recursion is reached We shall illustrate the process by an example of computing factorial  Activation record looks like: Return Addr Return Value Local Variables

49 Example:: main() calls fact(3) int fact (n) int n; { if (n = = 0) return (1); else return (n * fact(n-1)); } void main() { int n; n = 3; printf (“%d \n”, fact(n) ); }

50 TRACE OF THE STACK DURING EXECUTION fact returns to main RA.. main - n = 3 RA.. main - n = 3 RA.. fact - n = 2 RA.. main - n = 3 RA.. fact - n = 2 RA.. fact - n = 1 RA.. main - n = 3 RA.. fact - n = 2 RA.. fact - n = 1 RA.. fact 1 n = 0 RA.. main - n = 3 RA.. fact - n = 2 RA.. fact 1*1 = 1 n = 1 RA.. main - n = 3 RA.. fact 2*1 = 2 n = 2 RA.. main 3*2 = 6 n = 3 main calls fact

51 Do Yourself Trace the activation records for the following version of Fibonacci sequence int f (int n) { int a, b; if (n < 2) return (n); else { a = f(n-1); b = f(n-2); return (a+b); } void main() { printf(“Fib(4) is: %d \n”, f(4)); } Return Addr (either main, or X, or Y) Return Value Local Variables (n, a, b) X Y main