The status of the Excited Baryon Analysis Center B. Juliá-Díaz Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona (Spain)

Slides:



Advertisements
Similar presentations
G. Fedotov Electroproduction of  +  - p in the 2 nd resonance region off protons G. Fedotov, R. W. Gothe.
Advertisements

Neutrino-induced meson production model for neutrino oscillation experiments Satoshi Nakamura Nuclear Theory Group.
Neutrino-induced meson productions Satoshi Nakamura Osaka University, Japan Collaborators : H. Kamano (RCNP, Osaka Univ.), T. Sato (Osaka Univ.) T.-S.H.
1 Collaborators Johan Durand, CEA - Saclay Jun He, CEA - Saclay Zhenping Li, Univ. of Maryland Qiang Zhao, IHEP - Beijing PLAN:  Motivations  Chiral.
V.I.Mokeev NSTAR2007 at Bonn, September presented by V.I.Mokeev The studies of N* electrocouplings at various Q 2 elucidate relevant degrees of freedom.
Status of two pion production in πN IntroductionIntroduction Summary of ππN dataSummary of ππN data Isobar-model formalismIsobar-model formalism Parametrization.
Shin Nan Yang National Taiwan University Collaborators: S. S. Kamalov (Dubna) Guan Yeu Chen (Taipei) 18th International Conference on “Few-body Problems.
Qiang Zhao Institute of High Energy Physics, CAS and Theoretical Physics Center for Science Facilities (TPCSF), CAS Chiral quark model approach for the.
Ralf W. Gothe Nucleon Transition Form Factors Beijing Transition Form Factors at JLab: The Evolution of Baryonic Degrees of Freedom Ralf W. Gothe.
Highlights on hadron physics at CLAS K. Hicks JAEA Seminar May 18, 2012.
Generalities of the approaches for extraction of N* electrocouplings at high Q 2 Modeling of resonant / non resonant contributions is needed and should.
Y. Ikeda and T. Sato (Osaka Univ.) ストレンジ・ダイバリオンの 質量と崩壊幅の研究 KNN resonance (Recent theoretical progress) KNN resonance (Recent theoretical progress) Faddeev.
Baryon Spectroscopy at Jlab and J-PARC K. Hicks (Ohio U.) Baryons2013 Conference 24 June 2013.
Dynamical Coupled Channel Approach for Meson Production Reaction T. Sato Osaka U./KEK  Motivation  Analysis of meson production reaction and dynamical.
ニュートリノ原子核反応 佐藤 透 ( 阪大 理 ) JPARC Dec Our previous works on neutrino reaction single pion production(Delta region) nuclear coherent pion production.
Meson spectroscopy with unitary coupled-channels model Satoshi Nakamura Excited Baryon Analysis Center (EBAC), JLab Collaborators : H. Kamano (RCNP), T.-S.H.
Nucleon resonance studies in π + π - electroproduction off protons at high photon virtualities E. Isupov, EMIN-2009.
K*Λ(1116) Photoproduction and Nucleon resonances K*Λ(1116) Photoproduction and Nucleon resonances Sang-Ho Kim( 金相鎬 ) (NTG, Inha University, Korea) In collaboration.
V.L. Kashevarov. Crystal Collaboration Meeting, Mainz, September 2008 Photoproduction of    on protons ► Introduction ► Data analysis.
Baryon Spectroscopy: Recent Results and Impact – , Erice R. Beck HISKP, University of Bonn Introduction Impact of the new Polarization.
Dynamical Coupled-Channels Approach for Single- and Double-Pion Electroproductions: Status and Plans Hiroyuki Kamano Research Center for Nuclear Physics.
Dynamical coupled-channels analysis of meson production reactions at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration.
V.Mokeev NSTAR 2005 Workshop 1 Phenomenological analysis of recent CLAS data on double charged pion photo- and electroproduction off proton Outline : 
Dynamical coupled-channels study of meson production reactions from Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) MENU2010,
1 On extraction of the total photoabsorption cross section on the neutron from data on the deuteron  Motivation: GRAAL experiment (proton, deuteron) 
Electromagnetic N →  (1232) Transition Shin Nan Yang Department of Physic, National Taiwan University  Motivations  Model for  * N →  N DMT (Dubna-Mainz-Taipei)
Dynamical study of N-  transition with N(e,e'  ) Shin Nan Yang Department of Physics National Taiwan University Collaborators: G.Y. Chen, J.C. Chen (NTU)
Nstars: Open Questions Nstars: Open Questions L. Tiator, Institut für Kernphysik, Universität Mainz  Introduction  Roper and S 11  the role of the D.
Kaon Production on the Nucleon D. G. Ireland MENU Rome, September 30 – October 4, 2013.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
Nucleon Resonances in  Scattering up to energies W < 2.0 GeV  introduction  a meson-exchange model for  scattering  conventional resonance parameters.
1 Study of resonances with Dubna-Mainz-Taipei (DMT) dynamical model Shin Nan Yang National Taiwan University Study of resonances with Dubna-Mainz-Taipei.
Results of Nucleon Resonance Extraction via Dynamical Coupled-Channels Analysis from EBAC Hiroyuki Kamano (RCNP, Osaka U.) QNP2012, Palaiseau,
Meson Photoproduction with Polarized Targets   production a)  0 at threshold b) Roper and P 11 (1710)   production a) S 11 -D 13 phase rotation.
Daniel S. Carman Page 1 Hadron Sep , 2015 Daniel S. Carman Jefferson Laboratory N* Spectrum & Structure Analysis of CLAS Data  CLAS12 N*
1 Longitudinal and transverse helicity amplitudes of nucleon resonances in a constituent quark model - bare vs dressed resonance couplings Introduction.
PLAUSIBLE EXPLANATION FOR THE   (2000) PUZZLE HADRON 2011 XIV International Conference On Hadron Spectroscopy München, June 2011.
Baryon Resonance Analysis from MAID D. Drechsel, S. Kamalov, L. Tiator.
Chiral symmetry and Δ(1232) deformation in pion electromagnetic production Shin Nan Yang Department of Physics National Taiwan University “11th International.
Shin Nan Yang National Taiwan University Collaborators: S. S. Kamalov (Dubna) D. Drechsel, L. Tiator (Mainz) Guan Yeu Chen (Taipei) DMT dynamical model.
Dynamical Coupled-Channels Approach to Meson Production Reactions and N* Spectroscopy Hiroyuki Kamano (RCNP, Osaka U.) April 11, 2012.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Nucleon Resonances from DCC Analysis of for Confinement Physics T.-S. Harry Lee Argonne National Laboratory Workshop on “Confinement.
Dynamical coupled-channels approach to meson production reactions in the N* region and its application to neutrino-nucleon/nucleus reactions Hiroyuki Kamano.
V.I.Mokeev Hadron2011, June 13 –17, 2011, Munich Nucleon resonance electrocouplings from CLAS data on pion electroproduction V.I. Mokeev, I.G. Aznauryan,
Study of Excited Nucleon States at EBAC: Status and Plans Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration with B. Julia-Diaz,
Overview of the progress B. Juliá-Díaz Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona (Spain) The players: ¨
Shin Nan Yang National Taiwan University Collaborators: Guan Yeu Chen (Taipei) Sabit S. Kamalov (Dubna) D. Drechsel, L. Tiator (Mainz) DMT dynamical model.
The Durham HepData Project Reaction Database The George Washington University Data Analysis Center EBAC Bonn- Gatchina MAID SAID Databases: need and role?
Reaction models of meson production reactions B. Juliá-Díaz Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona (Spain)
Study of nucleon resonances at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration with B. Julia-Diaz, T.-S. H.
Dynamical coupled-channels study of hadron resonances and strangeness production Hiroyuki Kamano (RCNP, Osaka U.) in collaboration with B. Julia-Diaz (Barcelona.
1.More than 98% of dress quark masses as well as dynamical structure are generated non-perturbatively through DCSB (higgs mech.
H. Kamano , M. Morishita , M. Arima ( Osaka City Univ. )
Generalities of the reaction approaches
Hadron excitations as resonant particles in hadron reactions
Satoshi Nakamura (Osaka University)
Extracting h-neutron interaction from g d  h n p data
EBAC-DCC analysis of world data on pN, gN, and N(e,e’) reactions
Comprehensive study of S = -1 hyperon resonances via the coupled-channels analysis of K- p and K- d reactions Hiroyuki Kamano (KEK) 2016 JAEA/ASRC Reimei.
Mainz: Drechsel, Tiator Taipei: Guan Yeu Chen, SNY
Comprehensive study of S = -1 hyperon resonances via the coupled-channels analysis of K- p and K- d reactions Hiroyuki Kamano (KEK) YITP Workshop on.
Meson Production reaction on the N* resonance region
Resononace electrocouplings from 2p electroproduction
Current Status of EBAC Project
EBAC-DCC combined analysis of world data on pN and gN processes
On the analytic structure of the KN - pS scattering amplitudes
AN EXPLANATION OF THE D5/2-(1930) AS A rD BOUND STATE
Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab)
Presentation transcript:

The status of the Excited Baryon Analysis Center B. Juliá-Díaz Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona (Spain)

Summary Motivation Model used at , , , production: Hadronic production   Photoproduction   Electroproduction  *   Expected during 2010

Baryon Resonances Exciting the substructure we can learn about the forces which keep the quarks together, e.g. using the quark model picture some of the predicted states are: P11 (939) 0s 0p L=0, S=1/2, J  =1/2 + P33 Δ(1232) L=0, S=3/2, J  =3/2 + S11 (1535) L=1, S=1/2, J  =1/2 - D13 (1520) L=1, S=1/2, J  =3/2 - S31 (1620) L=1, S=1/2, J  =1/2 - D33 (1700) L=1, S=1/2, J  =3/2 - J=1/2 J=3/2 J=1/2 qqq

The Δ (1232) and others The Delta (1232) resonance stands as a clear peak The region 1.4 GeV – 2 GeV hosts ~ 20 resonances πN  X, πN N*: 1440, 1520, 1535, 1650, 1675, 1680,... Δ : 1600, 1620, 1700, 1750, 1900, … Δ (1232) 100

E.m. probes Jefferson LAB (USA) GRAAL (Grenoble) MAMI (Mainz) BATES (MIT) ELSA (Bonn) SPring 8 (Japan) (Courtesy of D. Leinweber) Originaly, the hope was that probing the structure with electrons would minimize the “hadronic” debris and would give a cleaner access to the properties of nucleons and resonances

Electroproduction of mesons ** N N* N N M Main elements: 1. Strong-strong interactions 2. Hadronic structure of Resonances 3. Electromagnetic structure of Resonances Coupled-channels

EBAC plan and method

N* properties N-N* form factors QCDQCDQCDQCD Lattice QCD Hadron Models Dynamical Coupled-Channels EBAC Reaction Data

Formalism (DCC) Non-resonant + resonant Dressed resonant vertex Resonance self energies Non-resonant amplitude (resummation)

Partial wave amplitude of a  b reaction: Reaction channels: Potential: 2-body v potential (no  N cut) 2-body v potential (no  N cut) bare N* state 2-body Z potential (with  N cut) 2-body Z potential (with  N cut) EBAC-DCC A. Matsuyama, T. Sato, T.-S.H. Lee, Phys. Rep. 2007

5 diagrams s-ch N u-ch N u-ch  t-ch  t-ch  2 diagrams s-ch N u-ch N 2 diagrams s-ch N u-ch N 3 diagrams s-ch N u-ch N t-ch  2 diagrams s-ch N u-ch N 2 diagrams s-ch N u-ch N 4 diagrams s-ch N u-ch N t-ch  t-ch  2 diagrams s-ch N u-ch N 2 diagrams s-ch N u-ch N 2 diagrams s-ch N u-ch N 4 diagrams s-ch N u-ch N u-ch  t-ch  1 diagram s-ch N 1 diagram s-ch N 2 diagrams s-ch N u-ch N 2 diagrams s-ch N t-ch  Total 36 diagrams Two body v’s (strong)

7 diagrams s-ch N u-ch N u-ch  t-ch  t-ch  t-ch  contact 2 diagrams s-ch N u-ch N 2 diagrams s-ch N u-ch N 4 diagrams s-ch N u-ch N t-ch  contact Total 20 diagrams 5 diagrams s-ch N u-ch N u-ch  t-ch  contact Two body v’s (e.m.)

EBAC framework overview Physics: Non-resonant obtained from phenomenological Lagrangians Unitarity fulfilled within the model Most relevant channels included Up to now , ,  ( , ,  ), near future  Consistent study of all production reactions Correct treatment of 3 body cut Technical Parallel computing version of the codes needed

Hadronic part (essential starting point)

MB  MB (up to 2 GeV) We introduce explicitly (impose) a minimal number of bare poles, 16 of 23 (4* and 3* from PDG): N: S11(2), P11(2), P13(1), D13(2), D15(1), F15(1) Δ: S31(1), P31(1), P33(2), D33(1), F35(1), F37(1)

Technical aspects Need for extensive parameter search. Several unknowns : e.g. couplings of resonances to MB states Supercomputing Resources NERSC LBNL (>500 kh, 07/10) PI: TSH Lee BSC, Spain (340 kh, 07/08), PI: B. Julia-Diaz Involved system of coupled integral equations with singularities.

 : comparisons to data EBAC SAID06

Data obtained through R. Arndt et al, SAID, gwdac.phys.gwu.edu B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, Phys. Rev. C 76, (2007) d  /d  Polarization  : comparisons to data (ii)

 : comparing amplitudes Amplitudes compared to GWU/SAID amplitudes for the I=1/2 sector B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, Phys. Rev. C 76, (2007 ) Real part of the AmplitudesImaginary part of the Amplitudes

 : comparing TCS Total Cross sections compared to experimental data B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, Phys. Rev. C 76, (2007) Prediction for the total cross sections for each individual channel

 : vs other approaches From M. Paris talk at INT 2009 and R. Arndt talk at Badhonnef 2009

   TCS s H. Kamano, B. Julia-Diaz, TSH Lee, A. Matsuyama, T. Sato, Phys. Rev. C 79 (2009) Not used to constrain the model. Previous works, mostly tree level: Meissner et al (1995  ) Oset et al (1985  )

  , distributions Data handled with the help of R. Arndt Invariant mass distributions Phase space Full model H. Kamano, B. Julia-Diaz, TSH Lee, A. Matsuyama, T. Sato, Phys. Rev. C 79 (2009)

Properties of N* (strong)

I. Analytic continuation of T(W) to the unphysical sheet by using contour deformation II. Poles can be both in the non-resonant and resonant amplitudes III. One can search for poles of T as a function of W (p’s are arbitrary) Resonance states Extraction of Resonances from Meson-Nucleon Reactions. N. Suzuki, T. Sato, T.-S.H. Lee, Phys. Rev. C 79 (2009) ; arXiv: , part of Suzuki’s PhD Thesis Resonance Mass

N. Suzuki, B. Julia-Diaz, H. Kamano, A. Matsuyama, TSH Lee, T Sato, arXiv: Dynamical origin of N(1440) poles EBAC i i 105 R. A. Arndt et al.(SAID) i i 83 M. Doring et al.(JUELICH) i 147/ i Within our framework the three P11 states evolve from the same bare state. 2. In the fig: evolution of the pole position as we increase the self energy

EBAC current N*

Electromagnetic part

Goal : E.m. meson production Make use of the vast database for single and double pion photo and electroproduction reactions (JLAB, ELSA, MAMI, …) to: 1)Look for yet unseen resonances 2)Confirm the existence of the N*s seen in the hadronic reactions 3)Extract resonance properties: a)Couplings to meson-baryon b)Electromagnetic structure

Schematic view ** N N* N Consequence of Unitarity

Data considered: – Differential cross sections –  p   0 p (8793) –  p   + n (5063) – Photon asymmetry (Sigma) –  p   0 p(1204) –  p   + n (881) Consider up to W = 1.6 GeV. Single pion photoproduction Analysis performed at specific energies. B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, L.C. Smith, Phys. Rev. C77, (2008)

σ TOT (  b) p0pp0p Comparison to data Total cross section Differential cross sections Target polarization p+np+n Single pion photoproduction

Electroproduction Julia-Diaz, Kamano, Lee, Matsuyama, Sato, Suzuki, Phys. Rev. C 80, (2009). 1. Fit1:  T +   L,  LT,  TT, p(e,e’  0 )p [Joo et al. PRL02] 2. Fit2 all p(e,e’  + )n, p(e,e’  0 )p 3. Fit3 p(e,e’  0 )p [Joo et al. PRL (2002 & 2003)] Consider W<1.65 MeV and Q 2 <1.45 GeV 2 No assumption on the Q 2 dependence of the helicity amplitudes Resonances which play a role: S 11, P 11, P 33, D 13 Could not fit all the structure functions simultaneously  Performed several fits to clarify the situation

Data at Q 2 <1.45 GeV 2 Fit1 Fit3 Fit2

Structure functions (ii) Q 2 = 0.4 GeV 2 Solid: Fit1 Dashed:Fit2 Dotted: Fit3 p+np+n Julia-Diaz, Kamano, Lee, Matsuyama, Sato, Suzuki, Phys. Rev. C 80, (2009).

Coupled channels effects 1. Solid Full Fit1 2. Dashed only  N intermediate (in e.m. piece) 3. Data from Q 2 = 0.4 GeV 2

   H. Kamano, B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, arXiv: (2009) (Phys. Rev. C in press) Study of two pion photoproduction: Good description near threshold Reasonable shape of angular distributions Not good description of the total cross sections of p  0  0 and p  +  - above 1440 MeV - Previous (tree level) works include Meissner (1994  ) Gomez Tejedor, Roca,(1993  ) Fix et al (2005)

In progress (~ 2010) EBAC second generation model: Full Combined (global fit) analysis of:   N   N,  N (W<2 GeV)   N    N (W<2 GeV)   N   N (W<2 GeV)   N    N (W<2 GeV)   N   N (W<2 GeV) N* structure extraction   *N   N (W<2 GeV, Q 2 <4 GeV 2 )   *N    N (W<2 GeV)   *N   N (W<2 GeV) WEBPAGE:

BACKUP

WEBPAGE: MANPOWER: Leader (ANL/JLAB): T.-S.H.Lee Postdocts (JLAB): H. Kamano S. Nakamura K. Tsushima A. Sibirtsev Starting date: 2006 EXTERNAL COLLABORATORS: T. Sato, N. Suzuki (Osaka) A. Matsuyama (Shizuoka) B. Julia-Diaz (Barcelona) B. Saghai, J. Durand (Saclay)

Timeline of EBAC results Full DCC Formalism A. Matsuyama, T.-S.H. Lee, T. Sato, Phys. Rep. (2007) Hadronic piece fixed (  N   N,  N)(W<2 GeV) B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, PRC (2007) J. Durand, B. Julia-Diaz, T.-S.H. Lee, T. Sato, B. Saghai, PRC (2008)  N   N (W<1.6 GeV) B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, LC Smith, PRC (2008)  N   N H. Kamano, B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, PRC (2008) Analytic continuation N. Suzuki, T. Sato, T.-S.H. Lee, PRC (2008)  *    N (W<1.6 GeV, Q 2 <1.5 GeV 2 ) B. Julia-Diaz, H. Kamano, T.-S.H. Lee, A. Matsuyama, T.Sato,, PRC (2009)    N (W<1.8 GeV) H. Kamano, B. Julia-Diaz, T.-S.H. Lee, A. Matsuyama, T. Sato, PRC (2010)

Multi step (unitarity) How do we produce meson-baryon states? Directly Through MB states Through MMB states  We need to incorporate all the possibilities  Unitarity Coupled-channels σ TOT (  b) pp

Structure functions Q 2 = 1.45 GeV 2 p0pp0p Solid: Fit1

H. Kamano, B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, arXiv: (2009), Phys. Rev. C in press   , N* effects

PDG *s and N*’s origin Are they all genuine quark/gluon excitations? |N*> =| qqq > Is their origin dynamical?  E.g. some could be understood as arising from meson-baryon dynamics |N*>= | MB > Most of their properties are extracted from  N   N  N   N

Z terms Z