Properties of Light The Wave Description of Light

Slides:



Advertisements
Similar presentations
The Arrangement of Electrons in Atoms
Advertisements

The Development of a New Atomic Model.
CH 4 NOTES HOW ELECTRONS ARE ARRANGED. ELECTROMAGNETIC SPECTRUM Includes : –Gamma rays –Xrays –Ultraviolet –Visible –Infrared –Microwaves –Radio waves.
The Development of a New Atomic Model  Problem with Rutherford model – no explanation of where e-s are  New info about light led to new model.
Properties of Light Is Light a Wave or a Particle?
Arrangement of Electrons in Atoms Part One Learning Objectives Read Pages Asgn #16: 103/1-6 1.
ELECTROMAGNETIC RADIATION AND THE NEW ATOMIC MODEL.
Light and Electrons October 27, 2014.
Electromagnetic Spectrum The emission of light is fundamentally related to the behavior of electrons.
NCCS & Properties of Light The Wave Description of Light Electromagnetic radiation is a form of energy that exhibits wavelike behavior.
Chapter 4 Arrangement of Electrons in Atoms. Starter Look at the colors on a computer screen. What do you notice? Close inspection reveals that they are.
Where are the electrons ? Rutherford found the nucleus to be in the center. He determined that the atom was mostly empty space. So, how are the electrons.
Chapter 4 Notes for those students who missed Tuesday notes.
Atomic Structure February 2012.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 The Development of a New Atomic Model Properties of Light.
Chapter 5 Section 5.1 Electromagnetic Radiation
Electromagnetic Radiation Electromagnetic radiation is classified into several types according to the frequency of its wave; these types include (in order.
 Unit 4 The Arrangement of Electrons Ch. 4. Exam 4 Analysis  Averages  The Atom+/25(%)  Measurement+/15(%) up from %  Phases/KMT+/10(82%) down from.
Modern Chemistry Chapter 4 Arrangement of Electrons in Atoms
Arrangement of Electrons in Atoms The Development of a New Atomic Model.
Mullis1 Arrangement of Electrons in Atoms Principles of electromagnetic radiation led to Bohr’s model of the atom. Electron location is described using.
CHAPTER 4: Section 1 Arrangement of Electrons in Atoms
The Development of a New Atomic Model. Objectives Explain the mathematical relationship between the speed, wavelength, and frequency of electromagnetic.
Electrons in Atoms The Development of a New Atomic Model.
The Development of a New Atomic Model  The Rutherford model of the atom was an improvement over previous models of the atom.  But, there was one major.
Light is an electromagnetic wave EM wave- a form of energy that exhibits wavelike behavior as it travels through space All the forms of EM radiation form.
Electronic Structure of Atoms Chapter 4 Electronic Structure of Atoms.
Modern Chemistry Chapter 4 Arrangement of Electrons in Atoms Sections 1-3 The Development of a New Atomic Model The Quantum Model of the Atom Electron.
Development of a New Atomic Model Properties of Light.
Chapter 4 ARRANGEMENT OF ELECTRONS IN ATOMS. Section 1 The Development of a New Atomic Model Properties of Light The Wave Description of Light Electromagnetic.
Electrons in Atoms Light is a kind of electromagnetic radiation. All forms of electromagnetic radiation move at 3.00 x 10 8 m/s. The origin is the baseline.
Enriched Chemistry Chapter 4 – Arrangement of Electrons in Atoms
Section 1 The Development of a New Atomic Model Properties of Light The Wave Description of Light Electromagnetic radiation is a form of energy that exhibits.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Table of Contents Chapter 4 Arrangement of Electrons in Atoms Section.
Chapter 4: Arrangement of Electrons in Atoms Coach Kelsoe Chemistry Pages
Vocabulary Review New radiation electromagnetic radiation wavelength
Electrons in Atoms. Wave Behavior of Light Day 1.
The Development of A New Atomic Model
Chemistry I Chapter 4 Arrangement of Electrons. Electromagnetic Radiation Energy that exhibits wavelike behavior and travels through space Moves at the.
Chapter 4 © Houghton Mifflin Harcourt Publishing Company Section 1 The Development of a New Atomic Model Properties of Light The Wave Description of Light.
Section 1 The Development of a New Atomic Model Objectives Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic.
1 Modern Atomic Theory. 2 ELECTROMAGNETIC RADIATION Visible Light Is A Form Of Energy X-rays UV rays radio waves microwaves.
Light Light is a kind of electromagnetic radiation, which is a from of energy that exhibits wavelike behavior as it travels through space. Other forms.
Electrons in Atoms Chapter 4. RUTHERFORD MODEL A NEW ATOMIC MODEL The ____________ model of the atom was a great improvement, but it was incomplete.
Chemistry Notes: Electromagnetic Radiation. Electromagnetic Radiation: is a form of energy that exhibits wavelike behavior as it travels through space.
Electrons in Atoms The Development of a New Atomic Model.
Preview Objectives Properties of Light Wavelength and Frequency The Photoelectric Effect The Hydrogen-Atom Line-Emission Spectrum Bohr Model of the Hydrogen.
Electrons in Atoms Chapter 4.
Chapter 4 Properties of Light The Wave Description of Light Section 1 The Development of a New Atomic Model Chapter 4 Properties of Light The Wave.
Electromagnetic Spectrum
Arrangement of electrons in atoms
Electrons in Atoms Chapter 4.
Arrangement of Electrons in Atoms
Section 1 The Development of a New Atomic Model
Electromagnetic Radiation
Chapter 4 The Wave Description of Light
The Development of a New Atomic Model
Electromagnetic spectrum
A New Atomic Model Chapter 4 Section 1.
Chapter 4 Preview Objectives Properties of Light
Arrangement of Electrons in Atoms
Arrangement of Electrons in Atoms
Arrangement of Electrons in Atoms
Electromagnetic spectrum
Arrangement of Electrons in Atoms
Arrangement of Electrons in Atoms
A New Atomic Model Section 4.1.
Chapter 4 Properties of Light The Wave Description of Light
Arrangement of Electrons in Atoms
Arrangement of Electrons
Presentation transcript:

Properties of Light The Wave Description of Light Section 1 The Development of a New Atomic Model Properties of Light The Wave Description of Light Electromagnetic radiation is a form of energy that exhibits wavelike behavior as it travels through space. Together, all the forms of electromagnetic radiation form the electromagnetic spectrum.

Electromagnetic Spectrum Section 1 The Development of a New Atomic Model Electromagnetic Spectrum

Electromagnetic Spectrum Section 1 The Development of a New Atomic Model Electromagnetic Spectrum Click below to watch the Visual Concept. Visual Concept

Properties of Light, continued Section 1 The Development of a New Atomic Model Properties of Light, continued Wavelength (λ) is the distance between corresponding points on adjacent waves. Frequency (ν) is defined as the number of waves that pass a given point in a specific time, usually one second.

Properties of Light, continued Section 1 The Development of a New Atomic Model Properties of Light, continued Frequency and wavelength are mathematically related to each other: c = λν In the equation, c is the speed of light (in m/s), λ is the wavelength of the electromagnetic wave (in m), and ν is the frequency of the electromagnetic wave (in s−1).

Wavelength and Frequency Section 1 The Development of a New Atomic Model Wavelength and Frequency

The Photoelectric Effect Section 1 The Development of a New Atomic Model The Photoelectric Effect The photoelectric effect refers to the emission of electrons from a metal when light shines on the metal. The Particle Description of Light A quantum of energy is the minimum quantity of energy that can be lost or gained by an atom.

Section 1 The Development of a New Atomic Model Photoelectric Effect

Photoelectric Effect Section 1 The Development of a New Atomic Model Click below to watch the Visual Concept. Visual Concept

The Photoelectric Effect, continued Section 1 The Development of a New Atomic Model The Photoelectric Effect, continued The Particle Description of Light, continued German physicist Max Planck proposed the following relationship between a quantum of energy and the frequency of radiation: E = hν E is the energy, in joules, of a quantum of radiation, ν is the frequency, in s−1, of the radiation emitted, and h is a fundamental physical constant now known as Planck’s constant; h = 6.626 × 10−34 J• s.

The Photoelectric Effect, continued Section 1 The Development of a New Atomic Model The Photoelectric Effect, continued The Particle Description of Light, continued A photon is a particle of electromagnetic radiation having zero mass and carrying a quantum of energy. The energy of a particular photon depends on the frequency of the radiation. Ephoton = hν

Quantization of Energy Section 1 The Development of a New Atomic Model Quantization of Energy Click below to watch the Visual Concept. Visual Concept

Energy of a Photon Section 1 The Development of a New Atomic Model Click below to watch the Visual Concept. Visual Concept

The Hydrogen-Atom Line-Emission Spectrum Section 1 The Development of a New Atomic Model The Hydrogen-Atom Line-Emission Spectrum The lowest energy state of an atom is its ground state. A state in which an atom has a higher potential energy than it has in its ground state is an excited state.

The Hydrogen-Atom Line-Emission Spectrum, continued Section 1 The Development of a New Atomic Model The Hydrogen-Atom Line-Emission Spectrum, continued When investigators passed electric current through a vacuum tube containing hydrogen gas at low pressure, they observed the emission of a characteristic pinkish glow. When a narrow beam of the emitted light was shined through a prism, it was separated into four specific colors of the visible spectrum. The four bands of light were part of what is known as hydrogen’s line-emission spectrum.

Hydrogen’s Line-Emission Spectrum Section 1 The Development of a New Atomic Model Hydrogen’s Line-Emission Spectrum

Bohr Model of the Hydrogen Atom Section 1 The Development of a New Atomic Model Bohr Model of the Hydrogen Atom Niels Bohr proposed a hydrogen-atom model that linked the atom’s electron to photon emission. According to the model, the electron can circle the nucleus only in allowed paths, or orbits. The energy of the electron is higher when the electron is in orbits that are successively farther from the nucleus.

Bohr Model of the Atom Section 1 The Development of a New Atomic Model Click below to watch the Visual Concept. Visual Concept

Bohr Model of the Hydrogen Atom, continued Section 1 The Development of a New Atomic Model Bohr Model of the Hydrogen Atom, continued When an electron falls to a lower energy level, a photon is emitted, and the process is called emission. Energy must be added to an atom in order to move an electron from a lower energy level to a higher energy level. This process is called absorption.

Photon Emission and Absorption Section 1 The Development of a New Atomic Model Photon Emission and Absorption

Comparing Models of the Atom Section 1 The Development of a New Atomic Model Comparing Models of the Atom Click below to watch the Visual Concept. Visual Concept