Quark Matter 2005, Budapest Xin-Nian Wang Lawrence Berkeley National Laboratory Jet and Leading Hadron Production
Asymptotic freedom Scale anomaly Phase transition Asymptotic Freedom and QCD David J. Gross H. David Politzer Frank Wilczek Nobel Prize in Physics 2004
Hard processes in heavy-ion collisions q q leading particle leading particle pQCD H. Zhang,J. Owens, E. Wang XNW, in preparation
Before the Beginning…
Single Spectra Suppression XNW and M. Gyulassy Phys. Rev. Lett. 68, 1480 (1992) ETET PHENIX
Non-suppression in p+A XNW, Phys. Rev. C 61, (2000) [hep-ph/ ] PHENIX
Azimuthal Anisotropy XNW Phys. Rev. C 63, (2001) Gyulassy, Vitev & XNW Phys. Rev. Lett. 86, 2537 (2001) STAR
Suppression of Back-side Correlation Pedestal&flow subtracted STAR, Phys. Rev. Lett. 90, (2003)
Modified Fragmentation Guo & XNW’00 DGLAP-like
Parton Energy Loss and QGP Gluon density correlation: BDPM; Gyulassy Vitev Levai Wang & XNW; Wiedemann; Zakharov LPM interference
pQCD Analysis of Jet Quenching Parton distr. in nuclei & p T broadeningModified Frag. Fun. E. Wang & XNW (2002), XNW (2004) Gyulassy, Levai & Vitev (2002) Eskola, Honkanen, Salgado & Wiedemann (2005) Q. Wang & XNW (2005) Turbide, Gale, Jeon & Moore (2005) Dainese, Loizides & Paic (2005) …
Jet Quenching at RHIC XNW, PLB595(04)165. LO analysis,
Energy Dependence of Jet Quenching D. d’Enterria, Hard Probes GeV XNW, PLB579(2004)299
Effect of non-Abelian energy loss Eg=EqEg=Eq E g =2 E q Q. Wang & XNW nucl-th/ Effects in heavy/light hadron ratio – Armesto, parallel 3c p T =6 GeV q= Eskola Honkanen Salgado Wiedemann
Nuclear Size Dependence
Sensitivity of R AA Cronin effect Slope of the jet spectra E-dependence of the energy loss Gyulassy & Vitev Eskola,Honkanen Salgado,Wiedemann
Back-2-back Dihadron Correlations Pedestal&flow subtracted ETET = STAR preliminary Majestero XNW, PLB595(04)165.
Modified Dihadron Fragmentation h1h1 h2h2 h1h1 h2h2 h1h1 h2h2 h1h1 h2h2 jet Majumder & XNW’04,05 Majumder, parallel 3b
Modified Dihadron Fragmentation D(z 1,z 2 )/D(z 1 )Triggering h 1 Hermes Preliminary Majumder & XNW nucl-th/ E. Wang & XNW, PRL89 (2002) Pedestal&flow subtracted Majumder, parallel 3b
Soft hadrons rings PHENIX Stoecker’04 Casalderrey-Solana,Shuryak & Teaney ‘04 Casalderrey-Solana (parallel 3b) MM Shock wave?
LPM & Angular Correlation Radiation in vacuum Formation time Multiple Scattering in QCD
LPM & Cherenkov-like Bremsstrahlung J. Ruppert & B. Muller PLB619(2005)123. Dremin, JETP(1979), hep-ph/ Dremin (parallel 10a) Majumder & XNW nuth Dielectric constant
Resonances in QGP above T c ? J/ survives at T=1.6-2 T c Asakawa &Hatsuda ’04 S. Datta, et al ‘04 F. Karsch & Laermann ‘03 Could there be other resonances? Shuryak & Zahed ‘04 Lee, Mocsy (parallel 10c); Mannarelli, Petreczky (parallel 7a)
Dielectric Constant in QGP Strong p-dependence Cherenkov angle Koch, Majumder & XNW’05 See Majumder (parallel 3b)
Future of Jet Quenching I No-trigger bias –Initial energy –Surface emission –Correlation background due to v2 XNW, Huang & Sarcevic,PRL77(96)231 -jet Events
Future of Jet Quenching II Heavy quark jet quenching –Djordjevic, Rapp, Teaney (parallel 5b) –B. Zhang (parallel 5a) Parton recombination at intermediate pt –Ko (parallel 2b), Hwa (parallel 3a), E. Wang (parallel 3c) 3D jet tomography –Adil (parallel 3a) Incorporate dynamic evolution of bulk matter
Summary Discovery of Jet Quenching at RHIC proves that a interacting dense matter is formed: Opaque to jets Dense matter at RHIC is 30 times higher than cold nuclei, energy density is 100 times higher Jet tomography a useful and power tool for studying properties of dense matter –Heavy quarks, dihadron correlation, angular distribution, flavor dependence … Soft hadron correlation Cherenkov radiation dielectric property of the QGP at RHIC
Back-up I
Jet Quenching Tomography