Objective: To answer the following three fundamental scientific questions about the Sun: What is the structure and dynamics of the solar interior? Why.

Slides:



Advertisements
Similar presentations
The Science of Solar B Transient phenomena – this aim covers the wide ranges of explosive phenomena observed on the Sun – from small scale flaring in the.
Advertisements

Solar Flares, CMEs, and Satellites, Oh My! M.M. Montgomery, PhD University of Central Florida LWS Heliophysics Summer School 2013.
Solar Theory (MT 4510) Clare E Parnell School of Mathematics and Statistics.
Stars and Galaxies The Sun.
ACTIVITY ON THE SUN: Prominences Sunspots Solar Flares CME’s – Coronal Mass Ejections Solar Wind Space Weather.
Sun Spots. The Problem In 2001 the European Space Agency (ESA), which catalogues and tracks satellites in orbit around the Earth, temporarily lost track.
 How Many Stars are in our Solar System???? a.Hundreds b.Millions c.Billions Explain why you chose the answer you picked.
Flare Luminosity and the Relation to the Solar Wind and the Current Solar Minimum Conditions Roderick Gray Research Advisor: Dr. Kelly Korreck.
The Sun – Describe characteristics of the Sun (S6C3PO2 high school)
Chapter 8 The Sun – Our Star.
The Solar Corona and Solar Wind Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics.
The Sun’s Dynamic Atmosphere Lecture 15. Guiding Questions 1.What is the temperature and density structure of the Sun’s atmosphere? Does the atmosphere.
The Sun – Our Star Chapter 7:. General Properties Average star Absolute visual magnitude = 4.83 (magnitude if it were at a distance of 32.6 light years)
1 B. Klecker Max-Planck-Institut für extraterrestrische Physik, Garching, Germany Kennebunkport, MN June 9, 2010 SOHO OVERVIEW.
General Properties Absolute visual magnitude M V = 4.83 Central temperature = 15 million 0 K X = 0.73, Y = 0.25, Z = 0.02 Initial abundances: Age: ~ 4.52.
Review Vocabulary magnetic field: the portion of space near a magnetic or current-carrying body where magnetic forces can be detected The Sun contains.
This Set of Slides This set of slides covers our Sun, nuclear processes, solar flares, auroras, and more… Units covered 49, 50, 51.
Show 1 -- photosphere & sunspots SUN COURSE - SLIDE SHOW 3 Show 2 -- corona & solar cycle Today: SOHO.
Chapter 7 The Sun. Solar Prominence – photo by SOHO spacecraft from the Astronomy Picture of the Day site link.
The star we see but seldom notice
From Geo- to Heliophysical Year: Results of CORONAS-F Space Mission International Conference «50 Years of International Geophysical Year and Electronic.
SDO Project Science Team 1 The Science of SDO. SDO Project Science Team 2 Sensing the Sun from Space  High-resolution Spectroscopy for Helioseismology.
Solar Rotation Lab 3. Differential Rotation The sun lacks a fixed rotation rate Since it is composed of a gaseous plasma, the rate of rotation is fastest.
The Sun. Sun Considered a medium STAR 93,000,000 miles away from Earth 1.39 million kilometers in diameter (one million Earths can fit inside the sun.
The Dangers of Solar Storms and Solar Cycles.  For every 1 million atoms of hydrogen in the entire sun  98,000 atoms of helium  850 of oxygen  360.
The Sun a medium sized star 93,000,000 miles away 109 times diameter of Earth 1 million Earths could fit in the Sun Made of gas: 82% hydrogen, 17% helium,
Charles Hakes Fort Lewis College1. Charles Hakes Fort Lewis College2 Doppler/ Sunspots/ Interior.
THE SUN AND STARS And anything I want to put in here.
The Sun and the Heliosphere: some basic concepts…
The Sun Chapter 29 Section 29.2 and Spaceweather.
Structure & Function. Our Nearest Star  Core  Comprises about 25% of sun’s interior  site of nuclear fusion  Radiative Zone  Energy produced in.
The Sun Our Nearest Star. The Source of the Sun’s Energy The Source of the Sun’s Energy Fusion of light elements into heavier elements. Hydrogen converts.
The Sun. Solar Prominence Sun Fact Sheet The Sun is a normal G2 star, one of more than 100 billion stars in our galaxy. Diameter: 1,390,000 km (Earth.
The Sun Internal structure of the Sun Nuclear fusion –Protons, neutrons, electrons, neutrinos –Fusion reactions –Lifetime of the Sun Transport of energy.
Solar System Missions Division Solar Orbiter Next major Solar and Heliospheric mission ESA ILWS flagship Now with the Inner Heliospheric Sentinels.
CHAPTER 22 THE SUN and ITS SOLAR SYSTEM
The Sun ROBOTS Summer Solar Structure Core - the center of the Sun where nuclear fusion releases a large amount of heat energy and converts hydrogen.
The Sun Astronomy 311 Professor Lee Carkner Lecture 23.
195 Å image – behind 195 Å image – Sun- Earth line – SOHO/ EIT image 195 Å image – Sun- Earth line – SOHO/ EIT image 195 Å image – ahead SECCHI Extreme.
Solar Wind and Coronal Mass Ejections
The Sun 1 of 200 billion stars in the Milky Way. Our primary source of energy.
The Sun.
STEREO Planned Launch November, Stereo imaging of Sun; coronal mass ejections from birth to Earth impact. What determines geo-effectiveness of solar.
Advanced Solar Theory (MT5810) OUTLINE 1.Observational properties of the Sun 2.MHD equations (revision) 3.Induction equation - solutions when R m >1 4.Magnetic.
The Dangers of Solar Storms and Solar Cycles.  Radius = 696,000 km  Mass = 2E30 kg  Luminosity = 3.8E26 W  Rotation Rate  25 days at the equator.
Sunspots. X-ray solar image Solar Flair Solar Corona.
The Sun The Sun imaged in white light by the SOHO spacecraft.
1. active prominences - solar prominences that change in a matter of hours.
The Sun Distance from Earth: 150 million km OR 93 million miles Size: 1.4 million km in diameter Age: 4.5 billion years old, halfway through its 10 billion.
The Sun Youra Taroyan. Age 4.5 ×10 9 years Mean diameter 1.392×10 6 km, 109 × Earth Mass ×10 30 kg, 333,000 × Earth Volume 1.412×10 18 km 3, 1,300,000.
The Solar System. Nebula Theory (our solar system) The solar system started from the spinning and condensing of a cloud of dust and gas. The greatest.
The Sun: Part 2. Temperature at surface = 5800 K => yellow (Wien’s Law) Temperature at center = 15,000,000 K Average density = 1.4 g/cm 3 Density at center.
Lesson 2.  At the center of our solar system is the Sun which is a typical medium sized star.  Composed mainly of Hydrogen (73% by mass), 23% helium.
Solar Astronomy Space Science Lab 2008 Pisgah Astronomical Research Institute.
Our Sun.
Our Star The Sun C. Alex Young NASA Goddard Space Flight Center July 21, 2006 NASA GSFC Visitor’s Center.
Sunspot Telescope Sunspots and surface granulation are the two main features. Telescope: Celestron NexStar 5 mounted on a Losmandy mount. Field of View.
A105 Stars and Galaxies  Homework 6 due today  Next Week: Rooftop Session on Oct. 11 at 9 PM  Reading: 54.4, 55, 56.1, 57.3, 58, 59 Today’s APODAPOD.
Reading Unit 31, 32, 51. The Sun The Sun is a huge ball of gas at the center of the solar system –1 million Earths would fit inside it! –Releases the.
THE SUN, OUR NEAREST STAR STARS ARE FORMED IN GIANT CLOUDS OF DUST CALLED NEBULA.
The Sun The SUN Chapter 29 Chapter 29.
Chapter 29. Sec 1 Structure of the sun People believed the sun’s energy came from fire They believed the sun burned some type of fuel to produce energy.
한 미 려 – Introduction (1) 2.Instrument & Observe 3.Science 2.
The Sun. Sun Fact Sheet The Sun is a normal G2 star, one of more than 100 billion stars in our galaxy. Diameter: 1,390,000 km (Earth 12,742 km or nearly.
The Sun – Our Star.
Solar Dynamics Observatory (SDO)
Sun Notes.
The Sun.
The Sun’s Layers and Solar Activity
The Centre of the Solar System Earth Science 11
Presentation transcript:

Objective: To answer the following three fundamental scientific questions about the Sun: What is the structure and dynamics of the solar interior? Why does the solar corona exist and how is it heated to the extremely high temperature of about °C? Where is the solar wind produced and how is it accelerated? Science highlights include: Revealing the first images ever of a star’s convection zone (its turbulent outer shell) and of the structure of sunspots below the surface. Providing the most detailed and precise measurements of the temperature structure, the interior rotation, and gas flows in the solar interior. Measuring the acceleration of the slow and fast solar wind. Identifying the source regions and acceleration mechanism of the fast solar wind in the magnetically "open" regions at the Sun's poles. Discovering new dynamic solar phenomena such as coronal waves and solar tornadoes. Revolutionising our ability to forecast space weather, by giving up to three days notice of Earth- directed disturbances, and playing a lead role in the early warning system for space weather. Monitoring the total solar irradiance (the ‘solar constant’) as well as variations in the extreme ultra violet flux, both of which are important to understand the impact of solar variability on Earth’s climate. Also: SOHO has become the most prolific discoverer of comets in astronomical history: as of May 2003, more than 620 comets had been found by SOHO. Solar and Heliospheric Observatory (SOHO)

Spacecraft and Launch: SOHO is a three-axis stabilised spacecraft pointing at Sun. The spacecraft was built for ESA by European industry. Dimensions: 4.3 × 2.7 × 3.7 metres (9.5 metres with solar arrays deployed). Mass: 1850 kilograms at launch. Launch: Launched by NASA using an Atlas rocket. Orbit SOHO orbits the Sun in step with the Earth, by slowly orbiting the First Lagrangian Point (L1) 1.5 million Km from Earth, where the combined gravity of Earth and Sun keep SOHO in an orbit locked to the Earth-Sun line. There, SOHO enjoys an uninterrupted view of the Sun. Mission lifetime Designed for a nominal mission lifetime of two years. the mission has been extended, through March This will allow SOHO to cover a complete 11-year solar cycle. Loss & Recovery: Control of the spacecraft was lost in June 1998, and restored three months later through superb efforts of the SOHO recovery team. All 12 instruments were still us-able, most with no ill effects. Two of the three on-board gyroscopes failed immediately and a third in December After that, new on-board software that no longer relies on gyroscopes was installed in February It allowed the spacecraft to return to full scientific operations, while providing an even greater margin of safety for spacecraft operations. This made SOHO the first three-axis stabilised spacecraft operated without gyroscopes, breaking new ground for future spacecraft designs.

Instruments: The scientific payload consists of 12 instruments, developed and furnished by 12 international consortia involving 29 institutes from 15 countries. More than 1500 scientists in countries all around the world are either directly involved in SOHO's instruments or have used SOHO data in their research programs. OPTICAL: Coronal Diagnostic Spectrometer (CDS) CDS measures emission lines in the solar corona and transition region, providing diagnostic information on the solar atmosphere, especially of the plasma in the temperature range from 10,000 to more than 1,000,000°K. Extreme ultraviolet Imaging Telescope (EIT) EIT provides full disc solar images at four selected EUV wavelengths, mapping the plasma in the low corona and transition region at temperatures between 80,000 and 2,500,000°K. Global Oscillations at Low Frequencies (GOLF) GOLF studies the internal structure of the Sun by measuring velocity oscillations over the entire solar disc. Large Angle and Spectrometric Coronograph (LASCO) LASCO observes the outer solar atmosphere (corona) from near the solar limb to a distance of ~35 Rsun (~1/7 th AU). LASCO used an occulter, creating an artificial solar eclipse, 24 hours a day, 7 days a week. LASCO has also become SOHO’s principal comet finder.

Michelson Doppler Imager/Solar Oscillations Investigation (MDI/SOI) MDI records the vertical motion (“tides”) of the Sun's surface at a million different points every minute. Measurements of the acoustic waves inside the Sun as they perturb the photosphere, enables study of the structure and dynamics of the Sun’s interior. MDI also measures the longitudinal component of the Sun’s magnetic field. Solar Ultraviolet Measurements of Emitted Radiation (SUMER) SUMER acquires detailed spectroscopic plasma diagnostics (flows, temperature, density, and dynamics) of the solar atmosphere, from the chromosphere through the transition region to the inner corona, over a temperature range from 10,000 to 2,000,000°K and above. Solar Wind Anisotropies (SWAN) SWAN does not look at the Sun. It watches the rest of the sky, measuring hydrogen that is ‘blowing’ into the Solar System from interstellar space. By studying the interaction between the solar wind and this hydrogen gas, SWAN determines how the solar wind is distributed. UltraViolet Coronograph Spectrometer (UVCS) UVCS makes UV measurements of the solar corona (between about 1.3 and 12 solar radii from the center) by creating an artificial solar eclipse. UVCS provides valuable information about the microscopic and macroscopic behaviour of the highly ionised coronal plasma. Variability of Solar Irradiance and Gravity Oscillations (VIRGO) VIRGO characterises solar intensity oscillations and measures the total solar irradiance (known as the ‘solar constant’) to quantify its variability over periods of days to the duration of the mission.

IN SITU MEASUREMENTS Charge, Element, and Isotope Analysis System (CELIAS) CELIAS samples the solar wind and energetic ions of solar, interplanetary and interstellar origin, as they sweep past SOHO. It analyses the density and composition of particles present in this solar wind. It warns of incoming solar storms that could damage satellites in Earth orbit. Comprehensive Suprathermal and Energetic Particle Analyzer (COSTEP) COSTEP detects and classifies very energetic particle populations of solar, interplanetary, and galactic origin. It is a complementary instrument to ERNE (see below). Energetic and Relativistic Nuclei and Electron experiment (ERNE) ERNE measures high-energy particles originating from the Sun and the Milky Way. It is a complementary instrument to COSTEP. Ground Control and Science Operations: SOHO is operated from NASA’s Goddard Space Flight Center (GSFC) by an integrated team of scientists and engineers from ESA, NASA, partner industries, research laboratories and universities. Ground control is provided via NASA’s Deep Space Network antennae, located at Goldstone (California), Canberra (Australia), and Madrid (Spain).

White Light Image from MDI near solar maximum

SOHO Peers Beneath a Sunspot

Quakes on the Sun Observed by MDI instrument on SOHO Seismic waves triggered by solar flare Wave speed increased as waves moved out from 10 km/s to 115 km/s 9:30 9:369:409:46 220,000 km

MDI/GONG Helioseismology “Images” of Changing Interior Near SurfaceInterior Cut-away

TOP IMAGES Rotation rates near the bottom of the convection zone (white line), the level of the suspected dynamo, change markedly over 6 months at solar minimum. (Left :1996 January; right: 1996 July) Faster/slower rates are shown in red/blue. Near the surface (seen on the left of each cutaway) bands of faster (red) and slower (green) rotation move towards the equator. LOWER IMAGE Shows how bands of faster/slower rotating material below solar surface move toward equator from solar minimum (1996) to near maximum (1999) SOHO is the NASA/ESA Solar Heliospheric Observatory. GONG is an NSF ground-based helioseismology network. The helioseismology instrument on SOHO provides high resolution data not obtainable from the ground, GONG provides long term measurements.

“Imaging” Solar Farside via Helioseismology

He II 304 Image from SOHO August 27, 1997

Spectacular Coronal Mass Ejection (CME) observed in the early hours of January 4, starting off as a filament eruption seen by the Extreme ultraviolet Imaging Telescope (EIT) in the 195 Å images. The complexity and structure of the CME as it passed through the Large Angle and Spectrometric Coronagraph (LASCO) C2 and C3 fields of view amazed even experienced solar physicists at the SOHO operations center. Spectacular CME Observed January 4, 2002 by SOHO

July 1, 2002 Comet Images CME Images

Discovery that Coronal Mass Ejections are a Global Phenomenon Discovery that Coronal Mass Ejections are a global phenomena with a CME at one location apparently triggering CME’s at other locations. Discovery of slow solar wind outflow in streamers due to episodic small coronal mass ejections with constant acceleration out to 30 Rsun. Discovery of coronal temperatures for ions much higher than for electrons: in polar coronal holes ~ 10 6 K for electrons, ~3 times higher for protons, ~30 times higher for oxygen ions. Results consistent with heating by MHD waves via ion cyclotron resonance process. White Light Corona and Background Star Field Small inner circle is size of Sun.

“Halo” CME Ejected Toward Earth