Accretion wake of recoiled black holes Roya Mohayaee CNRS, Institut d’Astrophysique de Paris Jacques Colin Observatoire de la Côte d’Azur, Nice Joe Silk.

Slides:



Advertisements
Similar presentations
Cosmological Structure Formation A Short Course III. Structure Formation in the Non-Linear Regime Chris Power.
Advertisements

arvard.edu/phot o/2007/m51/. Confronting Stellar Feedback Simulations with Observations of Hot Gas in Elliptical Galaxies Q. Daniel Wang,
Neutron Stars: Insights into their Formation, Evolution & Structure from their Masses and Radii Feryal Ozel University of Arizona In collaboration with.
The W i d e s p r e a d Influence of Supermassive Black Holes Christopher Onken Herzberg Institute of Astrophysics Christopher Onken Herzberg Institute.
UNCERTAINTIES ON THE BLACK HOLE MASSES AND CONSEQUENCES FOR THE EDDINGTON RATIOS Suzy Collin Observatoire de Paris-Meudon, France Collaborators: T. Kawaguchi.
Dark Matter Burners at the Galactic Center Igor Moskalenko & Larry Wai (STANFORD & KIPAC)
X-Ray Measurements of the Mass of M87 D. Fabricant, M. Lecar, and P. Gorenstein Astrophysical Journal, 241: , 15 October 1980 Image:
On the nature of AGN in hierarchical galaxy formation models Nikos Fanidakis and C.M. Baugh, R.G. Bower, S. Cole, C. Done, C. S. Frenk Leicester, March.
AGN in hierarchical galaxy formation models Nikos Fanidakis and C.M. Baugh, R.G. Bower, S. Cole, C. Done, C. S. Frenk Accretion and ejection in AGN, Como,
Dark matter and stars Malcolm Fairbairn. Hertzsprung-Russell (luminosity-temperature) Diagram.
Clusters & Super Clusters Large Scale Structure Chapter 22.
Supermassive Black Holes Course 689 Presentation by Yan Shi Nov 5, 2009.
Miami 2008, Fort Lauderdale, Dec. 2008Niayesh Afshordi, Perimeter Institute Niayesh Afshordi.
Numerical issues in SPH simulations of disk galaxy formation Tobias Kaufmann, Lucio Mayer, Ben Moore, Joachim Stadel University of Zürich Institute for.
Jesper Sommer-Larsen Dark Cosmology Centre, Niels Bohr Institute, Copenhagen Where are the "Missing" GalacticBaryons ?, The z~1 TF relation, Baryon “pinching”
Towards the Grand Unification of AGNs in Hierarchical Cosmologies Nikos Fanidakis and C.M. Baugh, R.G. Bower, S. Cole, C. Done, C.S. Frenk January 30,
Dark Matter and Galaxy Formation Section 4: Semi-Analytic Models of Galaxy Formation Joel R. Primack 2009, eprint arXiv: Presented by: Michael.
Black hole binary mergers: recent developments in numerical relativity First-term presentation By Nikos Fanidakis Supervisors: Carlton Baugh, Shaun Cole,
RECOILING BLACK HOLES IN GALACTIC CENTERS Michael Boylan-Kolchin, Chung-Pei Ma, and Eliot Quataert (UC Berkeley) astro-ph/
Astrophysical Jets Robert Laing (ESO). Galactic black-hole binary system Gamma-ray burst Young stellar object Jets are everywhere.
Numerical Modeling of Hierarchical Galaxy Formation Cole, S. et al. 2000, MNRAS 319, Adam Trotter December 4, 2007 Astronomy 704, UNC-Chapel Hill,
AGN in hierarchical galaxy formation models Nikos Fanidakis and C.M. Baugh, R.G. Bower, S. Cole, C. Done, C. S. Frenk Physics of Galactic Nuclei, Ringberg.
Cosmological evolution of Black Hole Spins Nikos Fanidakis and C. Baugh, S. Cole, C. Frenk NEB-XIII, Thessaloniki, June 4-6, 2008.
PRESIDENCY UNIVERSITY
A cosmic sling-shot mechanism Johan Samsing DARK, Niels Bohr Institute, University of Copenhagen.
The Milky Way and Other Galaxies Science A-36 12/4/2007.
Felipe Garrido Goicovic Supervisor: Jorge Cuadra PhD thesis project January 2014.
Black Holes Monsters Lurking at the Centers of Galaxies
Christopher | Vlad | David | Nino SUPERMASSIVE BLACK HOLES.
The Theory/Observation connection lecture 3 the (non-linear) growth of structure Will Percival The University of Portsmouth.
Dynamical state and star formation properties of the merging galaxy cluster Abell 3921 C. Ferrari 1,2, C. Benoist 1, S. Maurogordato 1, A. Cappi 3, E.
Black holes: do they exist?
AGN downsizing は階層的銀河形成論で 説明できるか? Motohiro Enoki Tomoaki Ishiyama (Tsukuba Univ.) Masakazu A. R. Kobayashi (Ehime Univ.) Masahiro Nagashima (Nagasaki Univ.)
Dark Matter in the Center of the Milky Way and the Stars Burning It Igor V. Moskalenko & Lawrence L. Wai (Stanford, KIPAC, SLAC) M&W 2007, ApJL accepted.
I N T R O D U C T I O N The mechanism of galaxy formation involves the cooling and condensation of baryons inside the gravitational potential well provided.
Case Western Reserve University May 19, Imaging Black Holes Testing theory of gas accretion:Testing theory of gas accretion: disks, jets Testing.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
January 25, 2006 NCW, Nice 1 1 Caustics in Dark Matter Halos Sergei Shandarin, University of Kansas (collaboration with Roya Mohayaee, IAP) Nonlinear Cosmology.
Quasars, black holes and galaxy evolution Clive Tadhunter University of Sheffield 3C273.
Gravitational Waves from Massive Black-Hole Binaries Stuart Wyithe (U. Melb) NGC 6420.
Equal- and unequal-mass mergers of disk and elliptical galaxies with black holes Peter Johansson University Observatory Munich 8 th Sino-German workshop.
The Building Up of the Black Hole Mass- Stellar Mass Relation Alessandra Lamastra collaborators: Nicola Menci 1, Roberto Maiolino 1, Fabrizio Fiore 1,
Gary Mamon, 2 July 2005, PNe as astronomical tools, Gdansk Do planetary nebulae indicate a lack of dark matter in elliptical galaxies? with Avishai DEKEL.
M-σ. Predicted in based on self- regulated BH growth M ~ σ 5 (Silk & Rees) M ~ σ 4 (Fabian)
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
Modeling the dependence of galaxy clustering on stellar mass and SEDs Lan Wang Collaborators: Guinevere Kauffmann (MPA) Cheng Li (MPA/SHAO, USTC) Gabriella.
Spins of supermassive black holes in quasars and galaxies Jian-Min Wang ( 王建民 ) Institute of High Energy Physics Chinese Academy of Sciences, Beijing Dec.
Coeval Evolution of Galaxies and Supermassive Black Holes : Cosmological Simulations J. A. de Freitas Pacheco Charline Filloux Fabrice Durier Matias Montesino.
1 Supermassive BHs do not correlate with DM haloes of galaxies J. Kormendy & R. Bender 2011, Nature, 469, Feb 10 Sang Chul KIM ( 김상철 )
Black Holes and the Evolution of Galaxies…. Summary Quasars and Evolution: the universe becomes interesting How we do it: things invisible to see. Demographics:
17 - Galaxy Evolution (and interactions).
Capture of Stars by Supermassive Black Holes J.A. de Freitas Pacheco T. Regimbau C. Filloux Observatoire de la Côte d’Azur.
Dark Matter Mathematics Janet Moore NASA Educator Ambassador Janet Moore NASA Educator Ambassador.
“Black hole spin and radioloudness in a ΛCDM universe” Claudia Lagos (PUC, Chile) Nelson Padilla (PUC, Chile) Sofía Cora (UNLP, Argentina) SOCHIAS 2008.
Accretion #3 When is the thin disk model valid? Reynolds number, viscosity Time scales in disk BH spectra Using X-ray spectra to determine BH mass and.
Preventing Star and Galaxy Formation Michael Balogh Department of Physics and Astronomy University of Waterloo.
1 Merging Black Holes and Gravitational Waves Joan Centrella Chief, Gravitational Astrophysics Laboratory NASA Goddard Space Flight Center Observational.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
Evolution of massive binary black holes Qingjuan Yu Princeton University July 21, 2002.
Properties of massive black hole mergers Marta Volonteri University of Michigan.
The Formation of the HE System 胡剑 清华天体物理中心 Apr. 22, 2005.
Arman Khalatyan AIP 2006 GROUP meeting at AIP. Outline What is AGN? –Scales The model –Multiphase ISM in SPH SFR –BH model Self regulated accretion ?!
Lecture 16 Measurement of masses of SMBHs: Sphere of influence of a SMBH Gas and stellar dynamics, maser disks Stellar proper motions Mass vs velocity.
ASTR112 The Galaxy Lecture 5 Prof. John Hearnshaw 8. Galactic rotation 8.3 Rotation from HI and CO clouds 8.4 Best rotation curve from combined data 9.
Miroslav Micic, Steinn Sigurdsson, Tom Abel, Kelly Holley-Bockelmann
The Origin and Structure of Elliptical Galaxies
Outline Part II. Structure Formation: Dark Matter
E. Moulin, C. Medina, J.-F. Glicenstein and A. Viana IRFU, CEA-Saclay
Outline Part II. Structure Formation: Dark Matter
Dark matter and anomalous gas in the spiral galaxy NGC 4559
Presentation transcript:

Accretion wake of recoiled black holes Roya Mohayaee CNRS, Institut d’Astrophysique de Paris Jacques Colin Observatoire de la Côte d’Azur, Nice Joe Silk University of Oxford astro-ph/ J-P Lasota conference, Wroclaw 2007

Galaxy (black hole) mergers BHs at the centre of many galaxies Galaxy mergers BH mergers Emission of gravitational waves formation of a new central BH HST : colliding galaxies in Canis Major NGC 2207 –IC 2163

Black hole & dark matter Adiabatic accretion: f final (E final,L final ) = f initial (E initial,L initial ) Initially :  initial ~ r - 

Black hole & dark matter (Young 1980, Gondolo & Silk 1999) Without BH :  initial ~ r -  With BH :  final ~ r -(9-2  )/(4-  )

Absolute luminosity (L) of BH in  -rays  +   L = luminosity factor x ∫  2 dV  /s luminosity factor = [ N  /m  2 ] c 4 /cm 3 /s/Gev 2 For M31: Fornasa et al 2007

Galaxy (black hole) mergers BHs at the centre of many galaxies Galaxy mergers BH mergers Emission of gravitational waves If isotropic formation of a new central BH HST : colliding galaxies in Canis Major NGC 2207 –IC 2163

Galaxy (black hole) mergers BHs at the centre of many galaxies Galaxy mergers BH mergers Emission of gravitational waves Ejection of the BH From the galaxy If isotropicIf anisotropic formation of a new central BH HST : colliding galaxies in Canis Major NGC 2207 –IC 2163

Ejection of a black hole during galaxies mergers

Spin=zero X=0.38

Ejection of a black hole during galaxies mergers spin ≠ 0 recoil velocity 4000 km/s Campanelli et al 2007

Orbit of an ejected BH Virial radius V~0 low  high v high 

Density profile of the accretion wake Cold medium >Bondi-Hoyle accretion (1944) Two-body problem +mass conservation V   r  (q) dq  (x) dx=  (q) dq

Density profile of the accretion wake  Analytic solution for stationary BHs :  (r)~ 1/√r hot medium (e.g. Maxwellian velocity distribution) > Danby & Camm (1957) V Jean’s theorem numerical solution for density

Wake density : radius of influence

Wake density : hot versus cold medium  Hot environment

Wake density : hot versus cold medium   Hot environmentCold environment

Constant density contours : large 

Constant density contours : reducing 

Wake density contours Wake density contours, small 

Highest density at the apapsis passage Virial radius V~0 low  high v high 

Time to reach the apapsis Initial velocity of BH / escape velocity

Absolute luminosity of a recoiled BH in  -rays L(M,z) = [ N  /m  2 ] ∫  2 dV  /s L= (1+z) 4 (M/M o ) R 2 cutoff  /s L BH / L host galaxy

Diffused  -ray background

BH Mass function Press & Schechter (1974) Density peaks in initially random gaussian field collapse to form ‘‘galaxies’’ Number density of galaxies of mass M at redsift z N(M,z)

Diffused  -ray background  =H 0 ∫∫  t(M,z) L(M,z) N(M,z) dM dr(z) Time the BH spends at apapsis (1+z) 4 (M/Mo) R 2 cutofff  /s Press-Schechter mass function

Time spent at apapsis  =H 0 ∫∫  t(M,z) L(M,z) N(M,z) dM dr(z)

 >  cm -2 s -1 sr -1 Future Prospects: Confronting the observations

HESS, VERITAS MAGIC GLAST EGRET  cm -2 s -1 sr -1  >  cm -2 s -1 sr -1