7-3: Solving Systems of Equations using Elimination

Slides:



Advertisements
Similar presentations
8-2: Solving Systems of Equations using Substitution
Advertisements

8-3: Solving Systems of Equations using Elimination
3-2: Solving Systems of Equations using Elimination
Solve an equation with variables on both sides
Solving Systems of three equations with three variables Using substitution or elimination.
4.3 Systems of Equations - Elimination Objective: The student will be able to: Solve systems of equations using elimination with addition and subtraction.
Solving a System of Equations by ELIMINATION. Elimination Solving systems by Elimination: 1.Line up like terms in standard form x + y = # (you may have.
Do Now Pass out calculators. Solve the following system by graphing: Graph paper is in the back. 5x + 2y = 9 x + y = -3 Solve the following system by using.
Bell Work2/12/15 Solve the system by elimination..
Lesson 6-3 – Solving Systems Using Elimination
Solving Systems of Equations: Elimination Method.
3-2: Solving Systems of Equations using Elimination
3x – 5y = 11 x = 3y + 1 Do Now. Homework Solutions 2)2x – 2y = – 6 y = – 2x 2x – 2(– 2x) = – 6 2x + 4x = – 6 6x = – 6 x = – 1y = – 2x y = – 2(– 1) y =
Dr. Fowler CCM Solving Systems of Equations By Elimination – Easier.
Do Now 1/13/12  In your notebook, list the possible ways to solve a linear system. Then solve the following systems. 5x + 6y = 50 -x + 6y = 26 -8y + 6x.
7.3 Solving Systems of Equations by Elimination (Addition & Subtraction) Solve by Elimination Example Problems Practice Problems.
Dr. Fowler CCM Solving Systems of Equations By Elimination – Harder.
Substitution Method: 1. Solve the following system of equations by substitution. Step 1 is already completed. Step 2:Substitute x+3 into 2 nd equation.
Solving Systems of Equations using Elimination. Solving a system of equations by elimination using multiplication. Step 1: Put the equations in Standard.
Solving Systems of Equations by Elimination (Addition) Section 3.2, Part II.
Elimination Method: Solve the linear system. -8x + 3y=12 8x - 9y=12.
7.4. 5x + 2y = 16 5x + 2y = 16 3x – 4y = 20 3x – 4y = 20 In this linear system neither variable can be eliminated by adding the equations. In this linear.
Do Now (3x + y) – (2x + y) 4(2x + 3y) – (8x – y)
Systems of Equations Standards: MCC9-12.A.REI.5-12
Solving Systems of Equations By Elimination. Warm – up!! *As you walk in, please pick up your calculator!!* Use substitution to solve the following systems.
Good Morning, We are moving on to chapter 3. If there is time today I will show you your test score you can not have them back as I still have several.
6.2 Solve a System by Using Linear Combinations
SOLVING SYSTEMS USING ELIMINATION 6-3. Solve the linear system using elimination. 5x – 6y = -32 3x + 6y = 48 (2, 7)
Y=3x+1 y 5x + 2 =13 Solution: (, ) Solve: Do you have an equation already solved for y or x?
EXTRA HELP WITH SYSTEMS OF EQUATIONS. SOLVING SYSTEMS OF EQUATIONS USING ELIMINATION Steps: 1. Place both equations in Standard Form, Ax + By = C. 2.
Homework 12/15/2015 Solving Systems of linear Equations packet Page 1, 2, and 3 Note: I am not available after school =(
Warm-Up #38Tuesday, 1/5/ Find the break-even point for -4x + y = 6 and -5x – y = Find the solution for y = -2 and 4x – 3y = 18.
Systems of Equations By Substitution and Elimination.
Warm-up. Systems of Equations: Substitution Solving by Substitution 1)Solve one of the equations for a variable. 2)Substitute the expression from step.
Elimination using Multiplication Honors Math – Grade 8.
Objective solve systems of equations using elimination.
3-2: Solving Systems of Equations using Elimination
Solving a System of Equations by ELIMINATION. Elimination Solving systems by Elimination: 1.Line up like terms in standard form x + y = # (you may have.
December 12, 2011 By the end of today: I will know how to solve systems by elimination.
Substitution Method: Solve the linear system. Y = 3x + 2 Equation 1 x + 2y=11 Equation 2.
Objective I can solve systems of equations using elimination with addition and subtraction.
Solving Systems of Equations using Elimination
3-2: Solving Systems of Equations using Substitution
Stand Quietly.
3-2: Solving Systems of Equations using Elimination
6-3 Solving Systems Using Elimination
3.3: Solving Systems of Equations using Elimination
3-2: Solving Systems of Equations using Substitution
Solving Systems of Equations using Substitution
Do Now 1) t + 3 = – 2 2) 18 – 4v = 42.
3-2: Solving Systems of Equations using Substitution
3-2: Solving Systems of Equations using Elimination
Notes Solving a System by Elimination
Solving Systems of Equations
3-2: Solving Systems of Equations using Elimination
Solving systems using substitution
Warm Up 12/3/2018 Solve by substitution.
Solving Systems of Equations
3-2: Solving Systems of Equations using Substitution
3-2: Solving Systems of Equations using Elimination
Solve the linear system.
Warm Up Solve by graphing Solve by substitution.
Solving Systems of Equations using Elimination
Exercise Solve and check x – 3 = 5. x = 8 8 – 3 = 5.
3-2: Solving Systems of Equations using Substitution
3-2: Solving Systems of Equations using Substitution
The student will be able to:
3-2: Solving Systems of Equations using Substitution
3-2: Solving Systems of Equations using Substitution
Step 1: Put the equations in Standard Form. Standard Form: Ax + By = C
Presentation transcript:

7-3: Solving Systems of Equations using Elimination Steps: 1. Place both equations in Standard Form, Ax + By = C. 2. Determine which variable to eliminate with Addition or Subtraction. 3. Solve for the variable left. 4. Go back and use the found variable in step 3 to find second variable. 5. Check the solution in both equations of the system.

5x + 3y = 11 5x = 2y + 1 EXAMPLE #1: STEP1: Write both equations in Ax + By = C form. 5x + 3y =11 5x - 2y =1 STEP 2: Use subtraction to eliminate 5x. 5x + 3y =11 5x + 3y = 11 -(5x - 2y =1) -5x + 2y = -1 Note: the (-) is distributed. STEP 3: Solve for the variable. 5x + 3y =11 -5x + 2y = -1 5y =10 y = 2

The solution to the system is (1,2). 5x + 3y = 11 5x = 2y + 1 STEP 4: Solve for the other variable by substituting into either equation. 5x + 3y =11 5x + 3(2) =11 5x + 6 =11 5x = 5 x = 1 The solution to the system is (1,2).

5x + 3y = 11 5x = 2y + 1 5(1) + 3(2) =11 5(1) = 2(2) + 1 5 + 6 =11 Step 5: Check the solution in both equations. The solution to the system is (1,2). 5x + 3y = 11 5(1) + 3(2) =11 5 + 6 =11 11=11 5x = 2y + 1 5(1) = 2(2) + 1 5 = 4 + 1 5=5

Solving Systems of Equations using Elimination Steps: 1. Place both equations in Standard Form, Ax + By = C. 2. Determine which variable to eliminate with Addition or Subtraction. 3. Solve for the remaining variable. 4. Go back and use the variable found in step 3 to find the second variable. 5. Check the solution in both equations of the system.

Example #2: x + y = 10 5x – y = 2 Step 1: The equations are already in standard form: x + y = 10 5x – y = 2 Step 2: Adding the equations will eliminate y. x + y = 10 x + y = 10 +(5x – y = 2) +5x – y = +2 Step 3: Solve for the variable. x + y = 10 +5x – y = +2 6x = 12 x = 2

Solution to the system is (2,8). x + y = 10 5x – y = 2 Step 4: Solve for the other variable by substituting into either equation. x + y = 10 2 + y = 10 y = 8 Solution to the system is (2,8).

x + y =10 5x – y =2 2 + 8 =10 5(2) - (8) =2 10 – 8 =2 10=10 2=2 Step 5: Check the solution in both equations. Solution to the system is (2,8). x + y =10 2 + 8 =10 10=10 5x – y =2 5(2) - (8) =2 10 – 8 =2 2=2

NOW solve these using elimination: 1. 2. 2x + 4y =1 x - 4y =5 2x – y =6 x + y = 3

NOW solve these using elimination: 1. 2. 2x + 4y =1 x - 4y =5 2x – y =6 x + y = 3 Solution (2,- 3 4 ) Solution (3,0)