1/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Microeconometric Modeling William Greene Stern School of Business New York University New.

Slides:



Advertisements
Similar presentations
Discrete Choice Modeling William Greene Stern School of Business IFS at UCL February 11-13, 2004
Advertisements

Discrete Choice Modeling William Greene Stern School of Business New York University.
3. Binary Choice – Inference. Hypothesis Testing in Binary Choice Models.
Discrete Choice Modeling William Greene Stern School of Business New York University.
12. Random Parameters Logit Models. Random Parameters Model Allow model parameters as well as constants to be random Allow multiple observations with.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Models William Greene Stern School of Business New York University.
1/62: Topic 2.3 – Panel Data Binary Choice Models Microeconometric Modeling William Greene Stern School of Business New York University New York NY USA.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Discrete Choice Modeling William Greene Stern School of Business New York University.
10. Multinomial Choice. A Microeconomics Platform Consumers Maximize Utility (!!!) Fundamental Choice Problem: Maximize U(x 1,x 2,…) subject to prices.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Discrete Choice Models William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University.
[Part 9] 1/79 Discrete Choice Modeling Modeling Heterogeneity Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
1/54: Topic 5.1 – Modeling Stated Preference Data Microeconometric Modeling William Greene Stern School of Business New York University New York NY USA.
[Part 4] 1/43 Discrete Choice Modeling Bivariate & Multivariate Probit Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Part 24: Stated Choice [1/117] Econometric Analysis of Panel Data William Greene Department of Economics Stern School of Business.
Discrete Choice Modeling
Discrete Choice Modeling William Greene Stern School of Business New York University.
Nested Logit Models.
14. Scaling and Heteroscedasticity. Using Degenerate Branches to Reveal Scaling Travel Fly Rail Air CarTrain Bus LIMB BRANCH TWIG DriveGrndPblc.
Microeconometric Modeling
1/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Microeconometric Modeling William Greene Stern School of Business New York University New.
[Part 7] 1/96 Discrete Choice Modeling Multinomial Choice Models Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Discrete Choice Modeling William Greene Stern School of Business New York University.
1/68: Topic 4.2 – Latent Class Models Microeconometric Modeling William Greene Stern School of Business New York University New York NY USA William Greene.
Discrete Choice Modeling William Greene Stern School of Business New York University.
11. Nested Logit Models. Extended Formulation of the MNL Groups of similar alternatives Compound Utility: U(Alt)=U(Alt|Branch)+U(branch) Behavioral implications.
[Part 8] 1/26 Discrete Choice Modeling Nested Logit Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University.
1/122: Topic 3.3 – Discrete Choice; The Multinomial Logit Model Microeconometric Modeling William Greene Stern School of Business New York University New.
[Part 5] 1/43 Discrete Choice Modeling Ordered Choice Models Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Discrete Choice Modeling William Greene Stern School of Business New York University.
1/26: Topic 2.2 – Nonlinear Panel Data Models Microeconometric Modeling William Greene Stern School of Business New York University New York NY USA William.
Microeconometric Modeling
Microeconometric Modeling
William Greene Stern School of Business New York University
Microeconometric Modeling
Discrete Choice Modeling
William Greene Stern School of Business New York University
Econometric Analysis of Panel Data
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Econometrics Chengyuan Yin School of Mathematics.
Microeconometric Modeling
Discrete Choice Modeling
Microeconometric Modeling
Econometric Analysis of Panel Data
William Greene Stern School of Business New York University
Microeconometric Modeling
William Greene Stern School of Business New York University
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Econometric Analysis of Panel Data
Empirical Methods for Microeconomic Applications University of Lugano, Switzerland May 27-31, 2019 William Greene Department of Economics Stern School.
William Greene Stern School of Business New York University
Microeconometric Modeling
Empirical Methods for Microeconomic Applications
Presentation transcript:

1/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Microeconometric Modeling William Greene Stern School of Business New York University New York NY USA William Greene Stern School of Business New York University New York NY USA 4.1 Nested Logit and Multinomial Probit Models

2/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Concepts Correlation Random Utility RU1 and RU2 Tree 2 Step vs. FIML Decomposition of Elasticity Degenerate Branch Scaling Normalization Stata/MPROBIT Models Multinomial Logit Nested Logit Best/Worst Nested Logit Error Components Logit Multinomial Probit

3/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Extended Formulation of the MNL Sets of similar alternatives Compound Utility: U(Alt)=U(Alt|Branch)+U(branch) Behavioral implications – Correlations within branches Travel PrivatePublic Air CarTrainBus LIMB BRANCH TWIG

4/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Correlation Structure for a Two Level Model  Within a branch Identical variances (IIA (MNL) applies) Covariance (all same) = variance at higher level  Branches have different variances (scale factors)  Nested logit probabilities: Generalized Extreme Value Prob[Alt,Branch] = Prob(branch) * Prob(Alt|Branch)

5/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Probabilities for a Nested Logit Model

6/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Model Form RU1

7/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Moving Scaling Down to the Twig Level

8/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Higher Level Trees E.g., Location (Neighborhood) Housing Type (Rent, Buy, House, Apt) Housing (# Bedrooms)

9/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Estimation Strategy for Nested Logit Models  Two step estimation (ca. 1980s) For each branch, just fit MNL  Loses efficiency – replicates coefficients For branch level, fit separate model, just including y and the inclusive values in the branch level utility function  Again loses efficiency  Full information ML (current) Fit the entire model at once, imposing all restrictions

10/30: Topic 4.1 – Nested Logit and Multinomial Probit Models MNL Baseline Discrete choice (multinomial logit) model Dependent variable Choice Log likelihood function Estimation based on N = 210, K = 10 R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj Constants only Chi-squared[ 7] = Prob [ chi squared > value ] = Response data are given as ind. choices Number of obs.= 210, skipped 0 obs Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] GC|.07578*** TTME| *** INVT| *** INVC| *** A_AIR| *** AIR_HIN1| A_TRAIN| *** TRA_HIN3| *** A_BUS| *** BUS_HIN4|

11/30: Topic 4.1 – Nested Logit and Multinomial Probit Models FIML Parameter Estimates FIML Nested Multinomial Logit Model Dependent variable MODE Log likelihood function The model has 2 levels. Random Utility Form 1:IVparms = LMDAb|l Number of obs.= 210, skipped 0 obs Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] |Attributes in the Utility Functions (beta) GC|.06579*** TTME| *** INVT| *** INVC| *** A_AIR| ** AIR_HIN1| A_TRAIN| *** TRA_HIN3| *** A_BUS| *** BUS_HIN4| |IV parameters, lambda(b|l),gamma(l) PRIVATE| *** PUBLIC| ***

12/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Elasticities Decompose Additively

13/30: Topic 4.1 – Nested Logit and Multinomial Probit Models | Elasticity averaged over observations. | | Attribute is INVC in choice AIR | | Decomposition of Effect if Nest Total Effect| | Trunk Limb Branch Choice Mean St.Dev| | Branch=PRIVATE | | * Choice=AIR | | Choice=CAR | | Branch=PUBLIC | | Choice=TRAIN | | Choice=BUS | | Attribute is INVC in choice CAR | | Branch=PRIVATE | | Choice=AIR | | * Choice=CAR | | Branch=PUBLIC | | Choice=TRAIN | | Choice=BUS | | Attribute is INVC in choice TRAIN | | Branch=PRIVATE | | Choice=AIR | | Choice=CAR | | Branch=PUBLIC | | * Choice=TRAIN | | Choice=BUS | | * indicates direct Elasticity effect of the attribute. |

14/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Testing vs. the MNL  Log likelihood for the NL model  Constrain IV parameters to equal 1 with ; IVSET(list of branches)=[1]  Use likelihood ratio test  For the example: LogL (NL) = LogL (MNL) = Chi-squared with 2 d.f. = 2( ( )) = The critical value is 5.99 (95%) The MNL (and a fortiori, IIA) is rejected

15/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Degenerate Branches Travel FlyGround Air Car Train Bus BRANCH TWIG LIMB

16/30: Topic 4.1 – Nested Logit and Multinomial Probit Models NL Model with a Degenerate Branch FIML Nested Multinomial Logit Model Dependent variable MODE Log likelihood function Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] |Attributes in the Utility Functions (beta) GC|.44230*** TTME| *** INVT| *** INVC| *** A_AIR| *** AIR_HIN1| A_TRAIN| *** TRA_HIN2| *** A_BUS| *** BUS_HIN3| |IV parameters, lambda(b|l),gamma(l) FLY|.86489*** GROUND|.24364***

17/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Using Degenerate Branches to Reveal Scaling

18/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Scaling in Transport Modes FIML Nested Multinomial Logit Model Dependent variable MODE Log likelihood function The model has 2 levels. Nested Logit form:IVparms=Taub|l,r,Sl|r & Fr.No normalizations imposed a priori Number of obs.= 210, skipped 0 obs Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] |Attributes in the Utility Functions (beta) GC|.09622** TTME| *** INVT| *** INVC| *** A_AIR| *** A_TRAIN| *** A_BUS| ** |IV parameters, tau(b|l,r),sigma(l|r),phi(r) FLY| ** RAIL|.92758*** LOCLMASS| *** DRIVE| (Fixed Parameter) NLOGIT ; Lhs=mode ; Rhs=gc,ttme,invt,invc,one ; Choices=air,train,bus,car ; Tree=Fly(Air), Rail(train), LoclMass(bus), Drive(Car) ; ivset:(drive)=[1]$

19/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Simulation NLOGIT ; lhs=mode;rhs=gc,ttme,invt,invc ; rh2=one,hinc; choices=air,train,bus,car ; tree=Travel[Private(Air,Car),Public(Train,Bus)] ; ru1 ; simulation = * ; scenario:gc(car)=[*]1.5 |Simulations of Probability Model | |Model: FIML: Nested Multinomial Logit Model | |Number of individuals is the probability times the | |number of observations in the simulated sample. | |Column totals may be affected by rounding error. | |The model used was simulated with 210 observations.| Specification of scenario 1 is: Attribute Alternatives affected Change type Value GC CAR Scale base by value Simulated Probabilities (shares) for this scenario: |Choice | Base | Scenario | Scenario - Base | | |%Share Number |%Share Number |ChgShare ChgNumber| |AIR | | | % -37 | |CAR | | | % -47 | |TRAIN | | | % -37 | |BUS | | | % 121 | |Total | | |.000% 0 |

20/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Uses the result that if U(i,j) is the lowest utility, -U(i,j) is the highest. Nested Logit Approach for Best/Worst

21/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Nested Logit Approach

22/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Nested Logit Approach Different Scaling for Worst 8 choices are two blocks of 4. Best in one brance, worst in the second branch

23/30: Topic 4.1 – Nested Logit and Multinomial Probit Models An Error Components Model

24/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Error Components Logit Model Error Components (Random Effects) model Dependent variable MODE Log likelihood function Response data are given as ind. choices Replications for simulated probs. = 25 Halton sequences used for simulations ECM model with panel has 70 groups Fixed number of obsrvs./group= 3 Hessian is not PD. Using BHHH estimator Number of obs.= 210, skipped 0 obs Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] |Nonrandom parameters in utility functions GC|.07293*** TTME| *** INVT| *** INVC| *** A_AIR| *** A_TRAIN| *** A_BUS| *** |Standard deviations of latent random effects SigmaE01| SigmaE02|

25/30: Topic 4.1 – Nested Logit and Multinomial Probit Models The Multinomial Probit Model

26/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Multinomial Probit Probabilities

27/30: Topic 4.1 – Nested Logit and Multinomial Probit Models The problem of just reporting coefficients Stata: AIR = “base alternative” Normalizes on CAR

28/30: Topic 4.1 – Nested Logit and Multinomial Probit Models | Multinomial Probit Model | | Dependent variable MODE | | Number of observations 210 || | Log likelihood function | Not comparable to MNL | Response data are given as ind. choice. | |Variable| Coefficient | Standard Error |b/St.Er.|P[|Z|>z]| Attributes in the Utility Functions (beta) GC | TTME | INVC | INVT | AASC | TASC | BASC | Std. Devs. of the Normal Distribution. s[AIR] | s[TRAIN]| s[BUS] | (Fixed Parameter) s[CAR] | (Fixed Parameter) Correlations in the Normal Distribution rAIR,TRA| rAIR,BUS| rTRA,BUS| rAIR,CAR| (Fixed Parameter) rTRA,CAR| (Fixed Parameter) rBUS,CAR| (Fixed Parameter) Multinomial Probit Model

29/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Multinomial Probit Elasticities | Elasticity averaged over observations.| | Attribute is INVC in choice AIR | | Effects on probabilities of all choices in model: | | * = Direct Elasticity effect of the attribute. | | Mean St.Dev | | * Choice=AIR | | Choice=TRAIN | | Choice=BUS | | Choice=CAR | | Attribute is INVC in choice TRAIN | | Choice=AIR | | * Choice=TRAIN | | Choice=BUS | | Choice=CAR | | Attribute is INVC in choice BUS | | Choice=AIR | | Choice=TRAIN | | * Choice=BUS | | Choice=CAR | | Attribute is INVC in choice CAR | | Choice=AIR | | Choice=TRAIN | | Choice=BUS | | * Choice=CAR | | INVC in AIR | | Mean St.Dev | | * | | | | INVC in TRAIN | | | | * | | | | INVC in BUS | | | | * | | | | INVC in CAR | | | | * | Multinomial Logit

30/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Not the Multinomial Probit Model MPROBIT This is identical to the multinomial logit – a trivial difference of scaling that disappears from the partial effects. (Use ASMProbit for a true multinomial probit model.)