AP Biology 2006-2007 Cellular Respiration Stage 4: Electron Transport Chain animations/etc/movie- flash.htm.

Slides:



Advertisements
Similar presentations
Stage 4: Electron Transport Chain
Advertisements

Oxidative Phosphorylation
The Electron Transport Chain. Oxidative Phosphorylation Oxidative Phosphorylation is the indirect formation of ATP. It involves a series of redox reactions.
AP Biology Cellular Respiration- Breaking the bonds of sugar to produce ATP ATP.
AP Biology Cellular Respiration Part 2. Is Oxygen present?
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration How do we harvest energy from fuels? Digest large molecules into smaller ones – break bonds & move electrons from one.
AP Biology AP Biology John D. O’Bryant School of Mathematics and Science October 26, 2012.
ELECTRON TRANSPORT CHAIN NADH and FADH 2, transfer their electrons to a series of compounds (mostly proteins), which are associated with the inner mitochondrial.
AP Biology Cellular Respiration Electron Transport Chain.
How Cells Harvest Energy Chapter 6
AP Biology Cellular Respiration Harvesting Chemical Energy.
Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate & Krebs Cycle (Ch. 10)
Packet 6 Cellular Energy.
AP Biology  convert glucose (6C) to 2 pyruvate (3C)  produces: 4 ATP & 2 NADH  consumes: 2 ATP  net: 2 ATP & 2 NADH glucose C-C-C-C-C-C P-C-C-C-C-C-C-P.
Cellular Respiration Harvesting Chemical Energy ATP.
Electron transport is the last phase of cellular respiration and takes place in the mitochondrial membrane that separates the mitochondrial matrix and.
Cellular Respiration Stage 4: Electron Transport Chain
Aim: What is the electron transport chain?
AP Biology Cellular Respiration Harvesting Chemical Energy Adapted from Ms. Lisa Miller’s AP Biology Notes.
AP Biology Chapter 9. Cellular Respiration Oxidation of Pyruvate Krebs Cycle.
Cellular Respiration Oxidation of Pyruvate Krebs Cycle Electron Transport Chain.
Cellular Respiration Harvesting Chemical Energy
Electron Transport Chain. NADH and FADH 2 are __________________ These electrons are transferred to a series of components that are found in the inner.
AP Biology Chapter 8. Cellular Respiration Harvesting Chemical Energy.
AP Biology Agenda 2/18  Cell Respiration Notes  Cell Respiration Modeling Activity  Homework: Cell Respiration Case Study, Cell Resp Worksheet, Watch.
AP Biology Cellular Respiration Overview Part 1. Process of Cellular Respiration.
AP Biology Cellular Respiration Harvesting Chemical Energy.
AP Biology Cellular Respiration Stage 4: Electron Transport Chain.
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Electron Transport Chain
Cellular Respiration Stage 2:Oxidation of Pyruvate Stage 3: Krebs Cycle Stage 4: ETC
Cellular Respiration Stage 4: Electron Transport Chain
Chapter 9.3 Cellular Respiration: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Chapter 9. Cellular Respiration STAGE 1: Glycolysis
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 2:Oxidation of Pyruvate Stage 3: Krebs Cycle Stage 4: ETC
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Part 2
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration (continued)
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Part 2
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration (continued)
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Step 4: Electron Transport Chain & Chemiosmosis
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain
Presentation transcript:

AP Biology Cellular Respiration Stage 4: Electron Transport Chain animations/etc/movie- flash.htm

AP Biology Cellular respiration

AP Biology What’s the point? The point is to make ATP ! ATP

AP Biology ATP accounting so far…  Glycolysis  2 ATP  Kreb’s cycle  2 ATP  Life takes a lot of energy to run, need to extract more energy than 4 ATP! A working muscle recycles over 10 million ATPs per second There’s got to be a better way! I need a lot more ATP!

AP Biology There is a better way!  Electron Transport Chain  series of proteins built into ___________________________________  along cristae  transport proteins & enzymes  transport of electrons down ETC linked to pumping of H + to create H + gradient  yields ___________ from 1 glucose!  only in presence of O 2 (_________________) O2O2

AP Biology Mitochondria  Double membrane  outer membrane  ____________________  highly folded cristae  enzymes & transport proteins  ____________________  fluid-filled space between membranes

AP Biology Electron Transport Chain Intermembrane space Mitochondrial matrix Q C NADH dehydrogenase cytochrome bc complex cytochrome c oxidase complex Inner mitochondrial membrane

AP Biology G3P Glycolysis Krebs cycle 8 NADH 2 FADH 2 Remember the Electron Carriers? 2 NADH glucose

AP Biology Electron Transport Chain intermembrane space mitochondrial matrix inner mitochondrial membrane NAD + Q C NADH H 2 O H+H+ e–e– 2H + +O2O2 H+H+ H+H+ e–e– FADH NADH dehydrogenase cytochrome bc complex cytochrome c oxidase complex FAD e–e– H H  e- + H + NADH  NAD + + H H p e Building proton gradient! What powers the proton (H + ) pumps?…

AP Biology H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ ATP NAD + Q C NADH H 2 O H+H+ e–e– 2H + +O2O2 H+H+ H+H+ e–e– FADH NADH dehydrogenase cytochrome bc complex cytochrome c oxidase complex FAD e–e– Stripping H from Electron Carriers  Electron carriers pass electrons & H + to ETC  H cleaved off NADH & FADH 2  electrons stripped from H atoms  H + (protons)  electrons passed from one electron carrier to next in mitochondrial membrane (ETC)  flowing electrons = energy to do work  transport proteins in membrane pump H + (protons) across inner membrane to intermembrane space ADP + P i

AP Biology But what “pulls” the electrons down the ETC? oxidative phosphorylation O2O2

AP Biology Electrons flow downhill  Electrons move in steps from carrier to carrier downhill to ___________  each carrier more electronegative  controlled oxidation  controlled release of energy

AP Biology H+H+ ADP + P i H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ We did it! ATP  Set up a H + gradient  Allow the protons to flow through ATP synthase  Synthesizes ATP ADP + P i  ATP “proton-motive” force

AP Biology  __________________________________________  build up of proton gradient just so H+ could flow through ATP synthase enzyme to build ATP Chemiosmosis _______________ links the Electron Transport Chain to ATP synthesis

AP Biology Peter Mitchell  Proposed chemiosmotic hypothesis  revolutionary idea at the time 1961 | proton motive force

AP Biology H+H+ H+H+ O2O2 + Q C 32 ATP 2 Pyruvate from cytoplasm Electron transport system ATP synthase H2OH2O CO 2 Krebs cycle Intermembrane space Inner mitochondrial membrane 1. Electrons are harvested and carried to the transport system. 2. Electrons provide energy to pump protons across the membrane. 3. Oxygen joins with protons to form water. 2H + NADH Acetyl-CoA FADH 2 ATP 4. Protons diffuse back in down their concentration gradient, driving the synthesis of ATP. Mitochondrial matrix 2 1 H+H+ H+H+ O2O2 H+H+ e-e- e-e- e-e- e-e-

AP Biology Cellular respiration 2 ATP ~36 ATP + + ~40 ATP

AP Biology Summary of cellular respiration  Where did the glucose come from?  Where did the O 2 come from?  Where did the CO 2 come from?  Where did the CO 2 go?  Where did the H 2 O come from?  Where did the ATP come from?  What else is produced that is not listed in this equation?  Why do we breathe? C 6 H 12 O 6 6O 2 6CO 2 6H 2 O~40 ATP  +++

AP Biology  ETC backs up  nothing to pull electrons down chain  NADH & FADH 2 can’t unload H  ATP production ceases  cells run out of energy  and you die! Taking it beyond…  What is the final electron acceptor in Electron Transport Chain? O2O2  So what happens if O 2 unavailable? NAD + Q C NADH H 2 O H+H+ e–e– 2H + +O2O2 H+H+ H+H+ e–e– FADH NADH dehydrogenase cytochrome bc complex cytochrome c oxidase complex FAD e–e–

AP Biology What’s the point? The point is to make ATP ! ATP