AClassical Description >E = T + V Harry Kroto 2004.

Slides:



Advertisements
Similar presentations
Poster Project Waves.
Advertisements

Atomic Spectroscopy Laboratory Science & Engineering Magnet High Mr. Puckett.
Lecture 5 An Introduction to Spectroscopy Electromagnetic radiation, electromagnetic wave Emission, absorption, fluorescence.
Electron Spin as a Probe for Structure Spin angular momentum interacts with external magnetic fields g e  e HS e and nuclear spins I m Hyperfine Interaction.
4/19/06 Spectra: Continuous vs. Discrete Friday’s Reading: Section 14.3: Lasers and LEDs (pp. 464 – 470) Upcoming Reading Assignments: Section 15.1: Cameras.
RECURSIVE PATTERNS WRITE A START VALUE… THEN WRITE THE PATTERN USING THE WORDS NOW AND NEXT: NEXT = NOW _________.
Photoelectron Spectrometers Survey of the Universe Harry Kroto 2004.
A Guide to Group Contracts. Contract Parts  Contact information  Group Goals  Roles and Responsibilities  Rules  Steps for firing a member  Signatures.
4-Level Laser Scheme. He-Ne Laser Tunable Dye Lasers.
Dr Gihan Gawish King Saud University Riyadh Saudi Arabia 1.
Patterns Chapter 7 It is important to practice writing vivid description. It will help you even when you are not writing description. Academic writing.
Introduction to Spectroscopy Yongsik Lee.
H = ½ ω (p 2 + q 2 ) The Harmonic Oscillator QM.
C We have to solve the time independent problem H o  o = E o  o Harry Kroto 2004.
Bill Madden  = (4  /3ħc)  n  e  m  2  (N m -N n )  (  o -  ) Square of the transition moment  n  e  m  2 2.Frequency.
365 x 24 x 60 x 60 Harry Kroto x 24 x 60 x 60 = 0.36 x 2.4 x 0.36 x 10 2 x 10 x 10 4 Harry Kroto 2004.
Dispersed fluorescence studies of jet-cooled HCF and DCF: Vibrational Structure of the X 1 A state.
QM2 Concept Test 13.6 Choose all of the following statements that are correct about electromagnetic radiation and transitions between two energy.
Section Piecewise Functions & Continuity. A piecewise function is a function that uses different rules for different parts of its domain.
Time independent H o  o = E o  o Time dependent [H o + V(t)]  = iħ  /  t Harry Kroto 2004 Time dependent Schrödinger [H o + V(t)]  = iħ  / 
Schrödinger Equation – Model Systems: We have carefully considered the development of the Schrödinger equation for important model systems – the one, two.
Contact Us.
Fermi’s Golden Rule Io I l Harry Kroto 2004.
He  He+  O+  OH+  OH2+  OH3+  OH2 +e + He + H + H + H + H
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
The Born-Oppenheimer Separation
How To Clean Xerox Laser Printer.
How To Add A Xerox Printer To Google Chrome
ASSIGNMENT NO.-2.
Frio River Cabins - Frio Vacation Homes - Frio Country Resort
Only three lines observed R(0) R(1) P(1)

“Forbidden Transitions”
Arithmetic & Geometric Sequences
Queen Magazine Harry Kroto 2004.
from W. Demtröder “Molecular Physics”
High Resolution Infrared Spectroscopy of Linear Cluster Ions
Perturbation Theory Lecture 4.
Note: For the following concept tests about time-dependent perturbation theory, The general state of a two-state system system at time
U line procedure DeltaF(J) = 2B(J+1) separations =2B (MHz)
p p → Fusion Reactions in Stars Hydrogen “Burning “ at 107 K
Rigid Diatomic molecule
This is the far infra red spectrum of the diatomic molecule CO
I = μr2 μ = m1m2/(m1+m2) I (uÅ2) = / B(cm-1)
Data Collection FREQUENCY DATA BEHAVIOR: BEHAVIOR:
Queen Magazine Harry Kroto 2004.
In Voltaire’s “Elémens de la Theorie de Newton“ (1738)
In Voltaire’s “Elémens de la Theorie de Newton“ (1738)
Final student growth rating based on work
Molecules Harry Kroto 2004.
(1+1)-REMPI spectra of initially oriented, surface-scattered molecules
CO Laboratory rotational infrared spectrum
The selection rules for vibration rotation transitions are
Activity! Create a small poster about a segment of the Electromagnetic Spectrum you will be assigned. You will find the information on pages
from W. Demtröder “Molecular Physics”
Firebase Vs. MongoDB: Choose the Best Database of 2019
at: ircamera.as.arizona.edu/.../magneticearth.htm
How do I get experimental information on bond lengths in simple
Your logo here.
Last hour: Variation Theorem in QM: If a system has the ground state energy E0 and the Hamiltonian ,then for any normalizeable WF  we have We can.
Consider the transition Ar (3p)6, 1S0 → Ar (3p)5 (4p), 1P1
For More Details:
Meet Us
Far infrared rotational spectrum of CO J= B
Now Buy Best External Door Hardware from Doorhardware
Contact Us
Building pattern  Complete the following tables and write the rule 
 l .  l   l   l   l  Io.
©.
It has come at the speed of light
Presentation transcript:

AClassical Description >E = T + V Harry Kroto 2004

AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  Harry Kroto 2004

AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 Harry Kroto 2004

AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions  n = n 2 – n 1,  J = ±1 Harry Kroto 2004

AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions  n = n 2 – n 1,  J = ±1 ETransition Frequencies >  F = - R[ 1/n 2 2 – 1/n 1 2 ] Harry Kroto 2004

AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions  n = n 2 – n 1,  J = ±1 ETransition Frequencies >  F = - R[ 1/n 2 2 – 1/n 1 2 ] FIntensities > THE SPECTRUM Harry Kroto 2004

AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions  n = n 2 – n 1,  J = ±1 ETransition Frequencies >  F = - R[ 1/n 2 2 – 1/n 1 2 ] FIntensities > THE SPECTRUM G Analysis > Pattern recognition; assign Q numbers Harry Kroto 2004

AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions  n = n 2 – n 1,  J = ±1 ETransition Frequencies >  F = - R[ 1/n 2 2 – 1/n 1 2 ] FIntensities > THE SPECTRUM GAnalysis > Pattern recognition; assign Q numbers HExperimental Details > spectrometers, laser fluorescence Harry Kroto 2004

AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions  n = n 2 – n 1,  J = ±1 ETransition Frequencies >  F = - R[ 1/n 2 2 – 1/n 1 2 ] FIntensities > THE SPECTRUM J Analysis > Pattern recognition; assign Q numbers HExperimental Details > spectrometers, laser fluorescence IMore Advanced Details > Relativistic Effects; Fermi contact term Harry Kroto 2004

AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions  n = n 2 – n 1,  J = ±1 ETransition Frequencies >  F = - R[ 1/n 2 2 – 1/n 1 2 ] FIntensities > THE SPECTRUM J Analysis > Pattern recognition; assign Q numbers HExperimental Details > spectrometers, laser fluorescence IMore Advanced Details > Relativistic Effects; Fermi contact term JInformation obtainable from the spectrum > B values structures Harry Kroto 2004

AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions  n = n 2 – n 1,  J = ±1 ETransition Frequencies >  F = - R[ 1/n 2 2 – 1/n 1 2 ] FIntensities > THE SPECTRUM J Analysis > Pattern recognition; assign Q numbers HExperimental Details > spectrometers, laser fluorescence IMore Advanced Details > Relativistic Effects; Fermi contact term JInformation obtainable from the spectrum > B values structures Harry Kroto 2004