AClassical Description >E = T + V Harry Kroto 2004
AClassical Description >E = T + V B QM description > the Hamiltonian H = E Harry Kroto 2004
AClassical Description >E = T + V B QM description > the Hamiltonian H = E CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 Harry Kroto 2004
AClassical Description >E = T + V B QM description > the Hamiltonian H = E CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions n = n 2 – n 1, J = ±1 Harry Kroto 2004
AClassical Description >E = T + V B QM description > the Hamiltonian H = E CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions n = n 2 – n 1, J = ±1 ETransition Frequencies > F = - R[ 1/n 2 2 – 1/n 1 2 ] Harry Kroto 2004
AClassical Description >E = T + V B QM description > the Hamiltonian H = E CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions n = n 2 – n 1, J = ±1 ETransition Frequencies > F = - R[ 1/n 2 2 – 1/n 1 2 ] FIntensities > THE SPECTRUM Harry Kroto 2004
AClassical Description >E = T + V B QM description > the Hamiltonian H = E CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions n = n 2 – n 1, J = ±1 ETransition Frequencies > F = - R[ 1/n 2 2 – 1/n 1 2 ] FIntensities > THE SPECTRUM G Analysis > Pattern recognition; assign Q numbers Harry Kroto 2004
AClassical Description >E = T + V B QM description > the Hamiltonian H = E CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions n = n 2 – n 1, J = ±1 ETransition Frequencies > F = - R[ 1/n 2 2 – 1/n 1 2 ] FIntensities > THE SPECTRUM GAnalysis > Pattern recognition; assign Q numbers HExperimental Details > spectrometers, laser fluorescence Harry Kroto 2004
AClassical Description >E = T + V B QM description > the Hamiltonian H = E CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions n = n 2 – n 1, J = ±1 ETransition Frequencies > F = - R[ 1/n 2 2 – 1/n 1 2 ] FIntensities > THE SPECTRUM J Analysis > Pattern recognition; assign Q numbers HExperimental Details > spectrometers, laser fluorescence IMore Advanced Details > Relativistic Effects; Fermi contact term Harry Kroto 2004
AClassical Description >E = T + V B QM description > the Hamiltonian H = E CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions n = n 2 – n 1, J = ±1 ETransition Frequencies > F = - R[ 1/n 2 2 – 1/n 1 2 ] FIntensities > THE SPECTRUM J Analysis > Pattern recognition; assign Q numbers HExperimental Details > spectrometers, laser fluorescence IMore Advanced Details > Relativistic Effects; Fermi contact term JInformation obtainable from the spectrum > B values structures Harry Kroto 2004
AClassical Description >E = T + V B QM description > the Hamiltonian H = E CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions n = n 2 – n 1, J = ±1 ETransition Frequencies > F = - R[ 1/n 2 2 – 1/n 1 2 ] FIntensities > THE SPECTRUM J Analysis > Pattern recognition; assign Q numbers HExperimental Details > spectrometers, laser fluorescence IMore Advanced Details > Relativistic Effects; Fermi contact term JInformation obtainable from the spectrum > B values structures Harry Kroto 2004