Vladimir ZORIN Institute of Applied Physics Nizhny Novgorod, Russia Additional Partner in EUROnu project ECR task: continuation of work with a 60 GHz ECR.

Slides:



Advertisements
Similar presentations
(not visible on the picture)
Advertisements

Superconducting Ion Source Development in Berkeley
EuCARD 2nd ANNUAL MEETING, CNRS-Paris May 2011 ECR Ion Sources R&D at LPSC * - Grenoble T. Lamy J. Angot, M. Marie-Jeanne, T. Thuillier, P. Sortais.
Pascal Sortais – LPSC/SSI - SFP Porquerolles Institut of Nuclear Physics (INS) Institut des Sciences Nucléaires (ISN) Cosmology and Subatomic Physic.
RAL 27 April 2006The beta-beam task, EURISOL1 Status of the beta-beam study Mats Lindroos on behalf of the EURISOL beta-beam task.
W. Udo Schröder, 2004 Instrumentation 1. W. Udo Schröder, 2004 Instrumentation 2 Probes for Nuclear Processes To “see” an object, the wavelength of the.
A Proposal of a Polarized 3 He ++ Ion Source with Penning Ionizer for JINR N.N. Agapov, Yu.N. Filatov, V.V. Fimushkin, L.V. Kutuzova, V.A. Mikhailov, Yu.A.
UCLA Experiments with short single e-bunch using preformed and beam ionized plasma Retain ability to run short single bunch with pre-ionized plasma Ken.
Runaway Electron Mitigation Collaboration on J-TEXT David Q. Hwang UC Davis Sixth US-PRC Magnetic Fusion Collaboration Workshop Collaborating Institutions:
CARE07, 29 Oct Alexej Grudiev, New CLIC parameters. The new CLIC parameters Alexej Grudiev.
Preinjector Group Collider-Accelerator Department
Plasma Dynamics Lab HIBP Abstract Measurements of the radial equilibrium potential profiles have been successfully obtained with a Heavy Ion Beam Probe.
R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz.
Pulse compression ABP Atoms, Beams & Plasmas Compression of Frequency-Modulated Pulses using Helically Corrugated Waveguide S.V. Samsonov, S.V. Mishakin,
Ion Beam Cocktail Development and ECR Ion Source Plasma Physics Experiments at JYFL Olli Tarvainen 11th International Conference on Heavy Ion Accelerator.
A Materials Evaluation Neutron Source Based on the Gas Dynamic Trap (DTNS) One Element in an Urgently Needed Comprehensive Fusion Materials Program Based.
Giovanni Ciavola I3 EURONS-2 COMPLECS Town Meeting, Sept. 19th, 2007, Helsinki 1 INFN - GSI - GANIL - LPSC - JYFL - KVI CERN - ATOMKI- TSL - NIPNE - IKF-
NON-EQUILIBRIUM HEAVY GASES PLASMA MHD-STABILIZATION IN AXISYMMETRIC MIRROR MAGNETIC TRAP A.V. Sidorov 2, P.A. Bagryansky 1, A.D. Beklemishev 1, I.V. Izotov.
Carbon Injector for FFAG
7.8GHz Dielectric Loaded High Power Generation And Extraction F. Gao, M. E. Conde, W. Gai, C. Jing, R. Konecny, W. Liu, J. G. Power, T. Wong and Z. Yusof.
Beam ripple minimization: influence of plasma instability.
“Ultra Pure and High Intensity Multiply Charged Radioactive Ion Beams” Associated institutes: IPNS KEK, Japan S. Jeong, N. Imai, M. Oyaizu, H. Myiatake.
Particle-in-Cell Modeling of Rf Breakdown in Accelerating Structures and Waveguides Valery Dolgashev, SLAC National Accelerator Laboratory Breakdown physics.
Parameter sensitivity tests for the baseline variant Konstantin Lotov, Vladimir Minakov, Alexander Sosedkin Budker Institute of Nuclear Physics SB RAS,
December 2007ESF-Workshop, Athens, Greece University of Jyväskylä, Department of Physics ECR ion source for the highly charged, intensive ion beams H.
New Progress of High Current Gasdynamic Ion Source
Vacuum Spark Ion Source: High Charge States Ion Beam E.M. Oks, G.Yu. Yushkov, A.G. Nikolaev, and V.P. Frolova High Current Electronics Institute, Siberian.
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov.
Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University.
Oliver Kester I3 EURONS EURONS, EURISOL-DS Town Meeting, Helsinki, Finland, Sept Advanced charge state breeding Objectives: To optimize the charge.
Improved Design for an ECR Charge Breeder of Radioactive Beams
HT-7 HIGH POWER MICROWAVE TEST SYSTEM AND EXPERIMENTS WANG Mao, LIU Yue-xiu, SHAN Jia-fang, LIU Fu-kun, XU Han-dong, YU Jia-wen Institute of Plasma Physics,
Recent Results on the Plasma Wakefield Acceleration at FACET E 200 Collaboration 1)Beam loading due to distributed injection of charge in the wake reduces.
ICIS2015,Aug , 2015, New York, USA Further improvement of RIKEN 28GHz SC-ECRIS for production of highly charged U ion beam T. Nakagawa (RIKEN, Nishina.
05/02/08 EUROnu, Elena Wildner, CERN, 05/02/ EURO Beta Beams Kick-off meeting  Elena Wildner, CERN.
Summary WP4, Beta Beams, Elena Wildner1 Beta-Beams (WP4) Summary Elena Wildner, CERN
Mats Lindroos Future R&D: beta-beam Mats Lindroos.
Use of the focusing multi-slit ion optical system at the diagnostic injector RUDI A.Listopad 1, J.Coenen 2, V.Davydenko 1, A.Ivanov 1, V.Mishagin 1, V.Savkin.
INVESTIGATIONS OF MULTI-BUNCH DIELECTRIC WAKE-FIELD ACCELERATION CONCEPT National Scientific Center «Kharkov Institute of Physics and Technology» Kharkov,
Advancement in photo-injector laser: Second Amplifier & Harmonic Generation M. Petrarca CERN M. Martyanov, G. Luchinin, V. Lozhkarev Institute of Applied.
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
NuFact'06 WG3, Aug. 2006A. Fabich, CERNBeta-beam Ion Losses, 1 The EURISOL Beta-beam Acceleration Scenario: Ion Losses A. Fabich, CERN NuFact’06, UCIrvine.
PST05, November 14-17, 2005 at Tokyo 1 Design of a polarized 6 Li 3+ ion source and its feasibility test A. Tamii Research Center for Nuclear Physics,
EURISOL – Task 11 meeting 2007S. Chabod 1 OUR CONTRIBUTION INSIDE EURISOL TASK 11 OPTIMIZATION OF IN-TARGET NUCLEI YIELDS Target parameters: material (Al.
RF source, volume and caesiated extraction simulations (e-dump)
WU2 - Proton Source Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud.
September 13, 2007 J. Alessi EBIS Project and EBIS as an ionizer for polarized He-3 ? Jim Alessi Work of E. Beebe, A. Pikin, A. Zelenski, A. Kponou, …
EURO EURO A High Intensity Neutrino Oscillation Facility in Europe Introduction Aims Structure Tasks Link to other activities Future dates.
Recent progress of RIKEN 28GHz SC-ECRIS for RIBF T. Nakagawa (RIKEN) 1.Introduction RIKEN Radio isotope factory project 2.RIKEN 28GHz SC-ECRIS Structure(Sc-coils,
“MuCyc” Update Kevin Paul Tech-X Corporation Don Summers University of Mississippi 1 NFMCC Meeting - 27 Jan 2009.
Beam Preparation, Task 9 Department of Physics, University of Jyväskylä.
Development and applications of submillimeter wave gyrotron FU series
Coherent THz radiation source driven by pre-bunched electron beam
Research and Practical Conference “Accelerators and Radiation technologies for the Futures of Russia” September 2012, Saint-Petersburg Neutron Sources.
Development of a new compact 5.8 GHz ECR ion source at LPSC
Development of a Polarized 6Li3+ Ion Source at RCNP
Old Dominion University, Norfolk, Virginia 23529, USA
A BASELINE BETA-BEAM Mats Lindroos AB Department, CERN
60 GHz ECR Ion Source for RIB production
Machine studies during beam commissioning
Future R&D: beta-beam Mats Lindroos Mats Lindroos.
The Gas Dynamic Trap (GDT) Neutron Source
Z6 experiments and necessary beam parameters
Pulsed Ion Linac for EIC
Feasibility Study of the Polarized 6Li ion Source
Explanation of the Basic Principles and Goals
Physics Design on Injector I
The GDT device at the Budker Institute of Nuclear Physics is an experimental facility for studies on the main issues of development of fusion systems based.
PHOENIX 28 GHz / 1 KW / 15 ms UHF at 4 Hz
Presentation transcript:

Vladimir ZORIN Institute of Applied Physics Nizhny Novgorod, Russia Additional Partner in EUROnu project ECR task: continuation of work with a 60 GHz ECR ion source for bunching studies of 6 He and 18 Ne started within EURISOL DS with the objective of reaching the high efficiencies needed for the beta-beam.

high efficiencies – how to reach? high gas efficiencies Proper pulse duration Proper ion extraction

Today’s my report about Proper pulse duration

Requirement for ion beam pulses Duration ~ 100 µs 100 µs 28 GHz Grenoble T. Lamy at al

Two approaches for creation of short pulse multicharged ion beams Short pulse ECR ion source Steady state generation Non-steady state (preglow & afterglow effects)

Steady state approach on generation of short pulses Plasma confinement time << pulse duration ~ 100µs Plasma confinement time ~ 10 – 20µs Quasi-gasdynamic plasma confinement

25 s Total extracted ion current End of MW pulse Rising time of total extracted ion current is ~15 s !!! Steady state approach on generation of short pulses, 37 GHz December 2005 Gyrotron 37.5 GHz, 100 kW Gasdynamic plasma confinement Cusp trap with 25 cm effective length Working gas is He

Ion spectrum during the steady-state Air contamination is from input gas (we used a pillow for He) Low plasma confinement time

Steady state approach, 75 GHz Rising time ≈ 15 µs Average charge ≈ 1,5 Simulation Experiment MW power 250 kW Magnetic field 3,5 T В.А. Скалыга, В.Г. Зорин, И.В. Изотов, А.В. Водопьянов, С.В. Голубев, Д.А. Мансфельд, С.В. Разин, А.В. Сидоров. Короткоимпульсный ЭЦР источник многозарядных ионов. ЖТФ A.V. Vodopyanov, S.V. Golubev, I.V. Izotov, V.I. Khizhnyak. D.A. Mansfeld, V.A. Skalyga and V.G. Zorin. ECR Plasma With 75 GHz Pumping. High Energy Physics and Nuclear Physics. 2007, 31(S1): 152—155. End of MW

Non-steady state approach 28 GHz Preglow Afterglow Pulse duration can not be<< Duration of Preglow ~ - confinement time Ion beam waveform Duration of Afterglow ~

Non-steady state approach confinement time Axi symmetrical mirror magnetic trap

Generation of short pulses of MCI in ECR ion source Experiments, gyrotron 37 GHz, March 2010 Ion current of Ar 4+ T свч =70 µsT свч =60 µsT свч =50 µsT свч =40 µs Just noise Duration of ion current vs microwave duration

MW pulse Ion current of N 3+ Microwave duration = 50 µs Duration of ion current = 20 µs Ion current of N 3+ = 2 мА 20 µs So,

Charge state distribution in short pulses C 2+ Argon Ar 3+ Ar 4+ Ar 5+ Ar 2+ C 2+ N 2+ C+C+ O+O+ Nitrogen H+H+ N+N+ N 2+ N 3+ N 4+ O 2+ O 3+ O+O+ C 2+ C 3+ C+C+

Steady state vs non-steady state Charge of ions Magnet current, eA Analyzer signal, a.u. Magnet current, A Nitrogen H+H+ N+N+ N 2+ N 3+ N 4+ O 2+ O 3+ O+O+ C 2+ C 3+ C+C+ Steady state Non-steady state

Modeling of short pulses Simple mirror trap, L=37 cm Mirror Ratio = 4 MW=10 kW/cm 2 Extraction voltage = 25 kV MW duration ~ 70 µs Experiment Modeling

Further but nearest experiments: He, Ne charge distribution, optimization control of pulse duration in experiments ion extraction emittance measurements MHD influence, when is it negligible?