Alexander V. Lapinov, G.Yu.Golubiatnikov, Inst. of Applied Physics of RAS, Nizhny Novgorod A.P.Velmuzhov Inst. of Metalloorganic Chemistry of RAS, Nizhny Novgorod J.-U.Grabow Inst. of Phys. Chem. and Electrochemistry, Leibniz University of Hannover A.Guarnieri Technical Faculty of Christian Albrecht University of Kiel Sub-Doppler and FTMW Spectroscopy of HCCCN Isotopologues MF06 Ohio H C CCN 15 N 13 C
Are rest molecular frequencies everywhere the same? How universal is our Universe in different parts? How small difference can we reveal from spectral measurements of different type molecular transitions?
N N H H H H H H H H H H H H N N eV 1.3 cm U(x) x double-well potential of the inversion vibrational mode of NH 3 NH 3 J,K=1,1 inv = (48)MHz 18 hf components, σ V =0.61m/s S.G. Kukolich, 1967, Phys.Rev. 156, 83 E=22.1 K E=23.3 K inv / inv = 4.5 /
HC 3 N hyperfine spectrum J F – J F Frequency(MHz) shift(km/s) σ V =2.8m/s 2 1 – (17) (9) 2 1 – (17) (7) 2 3 – (17) (2) 2 2 – (17) (0) 2 1 – (17) (4) 2 2 – (17) (6) HC3N J=1 – 0 data: de Zafra R.L., 1971 ApJ 170, 165 eQq N, C N data: R.L. DeLeon and J.S. Muenter, 1985, J.Chem.Phys. 82, 1702 E=0 K E=1.3 K E=2.6 K rot / rot = 1.0 /
Dark clouds (potential sites of Solar type star formation) – unique physical laboratories J.F. Alves, C.J. Lada & E.A. Lada 2001 Nature 409, 159 B68, optics Radiation life time: Transition Frequency τ(=A -1 ) CO J=1–0 115 GHz 162 days NH 3 (1,1) 24 GHz 69 days HC 3 N J=2–1 18 GHz 30 days HCN J=1–0 87 GHz 12 hours Very low temperature, Т k ~10K and density, n(H 2 )~10 4 …10 5 cm -3 Typical frequency of intermolecular collisions: n(H 2 ) cm 3 /s~10 -6 …10 -5 s -1 or ~ 1 collision per several days
H 15 NC J=1-0 frequency: Laboratory measurements: (26)MHz Lovas F.J., 2004 (Saykally et al. 1976, Ohio Symposium #31) (40)MHz Pearson et al (45)MHz Maki et al Radio astronomical measurements: (26)МГц (9 dark clouds) (44)МГц (23 dark clouds) Radio astronomical spectroscopy of H 15 NC Lapinov 2006 SPIE Proceedings 6580,
H 15 NC J=1-0 frequency: Laboratory measurements: (26)MHz Lovas F.J., 2004 (Saykally et al. 1976, Ohio Symposium #31) (40)MHz Pearson et al (45)MHz Maki et al Radio astronomical measurements: (26)МГц (9 dark clouds) (44)МГц (23 dark clouds) H.Bechtel (MIT) molecular jet measurements: (14)MHz (8)MHz (Global B, D, H fit) Radio astronomical spectroscopy of H 15 NC Lapinov 2006 SPIE Proceedings 6580,
Searching for chameleon-like scalar fields with the ammonia method 2010, Astron.Astrophys., v.512, A44 & Astron.Astrophys., v.524, A32 S.A.Levshakov, P.Molaro, A.V.Lapinov, D.Reimers, C.Henkel, T.Sakai S.A.Levshakov, A.V.Lapinov, C.Henkel, P.Molaro, D.Reimers, M.G.Kozlov, I.I.Agafonova 32m MEDICINA (Bologna) Italy 100m EFFELSBERG (Bonn) Germany 45m NOBEYAMA (NRAO) Japan rot / rot = 1.0 / inv / inv = 4.5 / / =0.3(V rot -V inv )/c Olive K.A., Pospelov M., 2008, Phys. Rev. D., v.77, p Idea of spatial m e /m p variations:
NH 3 (1,1) and HC 3 N(2-1) measurements of L1512 V(HC 3 N) – V(NH 3 ) = 26.5 1.2 m/s
NH 3 (1,1) and HC 3 N(2-1) measurements of L1498 V(HC 3 N) – V(NH 3 ) = 27.3 1.6 m/s V(HC 3 N) – V(NH 3 ) = 24.7 1.5 m/s
Study of central core of L1512 (0,0): V(HC 3 N) – V(NH 3 ) = 26.5 1.2 m/s 10 points: V(HC 3 N) – V(NH 3 ) = 26.6 2.8 m/s
Examples of HCCCN Lamb-dip measurements
Conclusions If we assume that the shift of rotational transition of HC 3 N J=2–1 relative inversion transition of NH 3 (1,1) is ΔV=V rot –V inv =(27.7±3.8 stat ±2.8 sys ) m/s, than from MPIfRA-100m data we can suppose that Δμ/μ=(μ obs –μ lab )/μ lab =(2.6±0.4 stat ±0.3 sys )· But now we know that the above shift is a combined error of a set of soft and hardware bugs. Taking into account NRO-45m measurements in HC 3 N J=5–4 and NH 3 (1,1) towards L1498 with V rot –V inv =–0.1±2.8 m/s, as well as recent Medicina-32m data in HC 3 N J=2–1 and NH 3 (1,1) towards L1498 and L1512 with V rot –V inv =–0.9±3.1 m/s и +0.4±3.1 m/s, it’s possible to conclude that for|ΔV|<3 m/s we have |Δµ/µ|<3·10 -9, what is three orders more precise in comparison with cosmological estimates of µ variation. Sometimes “high precision” is not equal to “high accuracy”: