LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland1 LHCb Silicon Tracker electronics: from R&D to preproduction.

Slides:



Advertisements
Similar presentations
Sci-Fi tracker for IT replacement 1 Lausanne 9. December 2010.
Advertisements

S. Veneziano, Lecce 21 February 2002 RPC readout and trigger electronics status Lecce 21/02/2002.
Workshop on Silicon Detector Systems, April at GSI Darmstadt 1 STAR silicon tracking detectors SVT and SSD.
LAr Frontend Board PRR Introduction 1.Overview of FEB functionality 2.FEB performance requirements 3.Development and evaluation of FEB 4.Organization of.
LHCb optical link meeting June Dirk Wiedner Emcore vs. Agilent RX modules Dirk Wiedner, Physikalisches Institut der Universität Heidelberg.
The LHCb Inner Tracker LHCb: is a single-arm forward spectrometer dedicated to B-physics acceptance: (250)mrad: The Outer Tracker: covers the large.
LECC 2006 Ewald Effinger AB-BI-BL The LHC beam loss monitoring system’s data acquisition card Ewald Effinger AB-BI-BL.
Tullio Grassi ATLAS–CMS Power Working Group 31 March 2010 DC-DC converters and Power Supplies requirements for CMS HCAL Phase 1 Upgrade.
The Optical Transmitters for the LHCb L0 Calorimeter Trigger G.Avoni, G. Balbi, A. Carbone, I. D’Antone, D. Galli, I. Lax, U. Marconi and V. Vagnoni, INFN,
IEEE06/San Diego R. Kass N Bandwidth of Micro Twisted-Pair Cables and Spliced SIMM/GRIN Fibers and Radiation Hardness of PIN/VCSEL Arrays W. Fernando,
R&D on pixel sensors at ILC ILC Workshop - November 2006 – Valencia.
IEEE08/NSS R. Kass N Radiation-Hard/High-Speed Data Transmission Using Optical Links W. Fernando, K.K. Gan, A. Law, H.P. Kagan, R.D. Kass, J. Moore,
1 L0 Calorimeter Trigger LHCb Bologna CSN1 Assisi, 22/9/04 U. Marconi INFN Sezione di Bologna.
Calorimeter upgrade meeting - Wednesday, 11 December 2013 LHCb Calorimeter Upgrade : CROC board architecture overview ECAL-HCAL font-end crate  Short.
Jeroen van Hunen The LHCb Tracking System. May 22, 2006 Frontier Detectors for Frontier Physics, Elba, Jeroen van Huenen 2 The LHCb Experiment LHCb.
Outer Tracker meeting NIKEF 27 July Dirk Wiedner Status of the OT readout electronics in Heidelberg Dirk Wiedner, Physikalisches Institut der Universität.
M. Lo Vetere 1,2, S. Minutoli 1, E. Robutti 1 1 I.N.F.N Genova, via Dodecaneso, GENOVA (Italy); 2 University of GENOVA (Italy) The TOTEM T1.
Update on the HBD Craig Woody BNL DC Meeting June 8, 2005.
3 rd Work Meeting of CBS-MPD STS, Karelia, 2009 Towards CBM STS Volker Kleipa, GSI Darmstadt.
23 February 2004 Christos Zamantzas 1 LHC Beam Loss Monitor Design Considerations: Digital Parts at the Tunnel Internal Review.
Installation and operation of the LHCb Silicon Tracker detector Daniel Esperante (Universidade de Santiago de Compostela) on behalf of the Silicon Tracker.
HBD FEM Overall block diagram Individual building blocks Outlook ¼ detector build.
FE Electronics - Overview ASD TDC L0 Buffer L1 Buffer biasL0 BXL1 50 fC DAQ counting room ~100m FE Electronics on the detector GOL Electronics Service.
CPT Week, April 2001Darin Acosta1 Status of the Next Generation CSC Track-Finder D.Acosta University of Florida.
Sven Löchner ASIC-Laboratory, Max-Planck-Institute for Nuclear Physics Heidelberg 9-13 September 2002, Colmar, France 8 th Workshop on Electronics for.
BTeV Pixel Detector Optical link receiver chip Data In and Out project.
Wilco Vink 1 Outline Optical station Vertex processor board Output board Latency.
Etam Noah, CERN15 th September 2004Qualification of the CMS Digital Optohybrid Outline: CMS optical digital control links DOH components DOH history and.
CSC ME1/1 Upgrade Status of Electronics Design Mikhail Matveev Rice University March 28, 2012.
ATLAS PIXEL SYSTEM OVERVIEW M. Gilchriese Lawrence Berkeley National Laboratory March 11, 1999.
Michał Dwużnik, for the SCT collaboration
John Coughlan Tracker Week October FED Status Production Status Acceptance Testing.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
Guido Haefeli CHIPP Workshop on Detector R&D Geneva, June 2008 R&D at LPHE/EPFL: SiPM and DAQ electronics.
01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.
26 June 2006Imaging2006, Stockholm, Niels Tuning 1/18 Tracking with the LHCb Spectrometer Detector Performance and Track Reconstruction Niels Tuning (Outer.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
- Performance Studies & Production of the LHCb Silicon Tracker Stefan Koestner (University Zurich) on behalf of the Silicon Tracker Collaboration IT -
15 February 2007Dirk Wiedner / LHCb1 Radiation Monitors for LHCb.
CHEF 2013 – 22-25th April 2013 – Paris LHCb Calorimeter Upgrade Electronics E. Picatoste (Universitat de Barcelona) On behalf of the LHCb group.
A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group Department of.
Upgrade of the CSC Endcap Muon Port Card with Spartan-6 FPGA Mikhail Matveev Rice University 30 April 2012.
Peter LICHARD CERN (NA62)1 NA62 Straw tracker electronics Study of different readout schemes Readout electronics frontend backend Plans.
Status of the Beetle front-end chip carrier for SRS Lorne Levinson Weizmann Institute of Science Rehovot, Israel L. Levinson, Weizmann Institute, Nov.
LECC 2005, HeidelbergA. Vollhardt, EPF Lausanne/Switzerland1 Production of the LHCb Silicon Tracker Readout Electronics.
1 Status of Validation Board, Selection Board and L0DU Patrick Robbe, LAL Orsay, 19 Dec 2006.
Mai 31th 2011 Christophe Beigbeder PID meeting1 ETD meeting Test setup : Activities in Bari, Univ of Maryland and at Orsay Test setup : Activities in Bari,
FPGA based signal processing for the LHCb Vertex detector and Silicon Tracker Guido Haefeli EPFL, Lausanne Vertex 2005 November 7-11, 2005 Chuzenji Lake,
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
H. Krüger, , DEPFET Workshop, Heidelberg1 System and DHP Development Module overview Data rates DHP function blocks Module layout Ideas & open questions.
LECC2003: The 96 Chann FED Tester: Greg Iles30 September The 96 channel FED Tester Outline: (1) Background (2) Requirements of the FED Tester (3)
1 Roger Rusack The University of Minnesota. Projects  Past Projects  11,000 channels of 0.8 Gbs for the CMS crystal calorimeter readout.  1,500 channels.
29/05/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.
Martin van Beuzekom, Jan Buytaert, Lars Eklund Opto & Power Board (OPB) Summary of the functionality of the opto & power board.
Aras Papadelis. NIKHEF 1 Aras Papadelis B-physics meeting 15/ Results from the Nov2004 VELO test beam (and what followed…)
Production of the LHCb Silicon Tracker Readout Electronics
Developing Radiation Hard Silicon for the Vertex Locator
ECAL front-end electronic status
Update on CSC Endcap Muon Port Card
Large Area Endplate Prototype for the LC TPC
VELO readout On detector electronics Off detector electronics to DAQ
LHCb calorimeter main features
UNIZH and EPFL at LHCb.
Vertex Detector Overview Prototypes R&D Plans Summary.
STAR-CBM Joint Workshop Heidelberg, Physikalisches Institut
Niels Tuning (Outer Tracker Group LHCb)
Setup for testing LHCb Inner Tracker Modules
PID meeting Mechanical implementation Electronics architecture
The LHCb Front-end Electronics System Status and Future Development
Presentation transcript:

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland1 LHCb Silicon Tracker electronics: from R&D to preproduction

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland2 Silicon Tracker geometry  Trigger Tracker: 1 4 layers between RICH1 and magnet  Inner Tracker: 3 4 layers each around beampipe at stations T1-T3 (between magnet and RICH2)  Different geometry but same electronics!

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland3 Station overview TT stationIT station 143k channels129k channels

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland4 TT Sensor layout TT:  512 detector channels per ladder for TT, pitch 183 um, sensor thickness 500 um  Ladders composed from up to 4 sensors in series, 3 sensors + flexcable, or 1 sensor + long flexcable  Frontend hybrids located outside acceptance

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland5 Flexcable prototype  um sensors in series with 39 cm flexcable (Ctot = 38 pF)  Included in CERN X7 testbeam in Summer 2004 with Beetle 1.3 hybrid  Measured S/N 16.5, in agreement with capacitance calculations

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland6 IT sensor layout IT:  384 detector channels per ladder for IT, pitch 198 um, sensor thickness 410 um (2-sensor module) and 320 um (1-sensor module)  Frontend hybrids inside detector acceptance

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland7 Beetle frontend hybrids  4-layer polyimide hybrid  Beetle chip is only active device: 0.25 um CMOS, rad-hard design 128 channel charge integrator (see talk U. Trunk, session A3)  3 chip hybrid for IT (3x 128 ch)  4 chip hybrid for TT (4x 128 ch)

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland8 Digital optical readout link  less material in detector  less radiation O-RX card (on TELL1 board) ADCs Beetle FE chip Other FE chipsService box TELL1 board MRX9512 Service box located outside detector acceptance (IT+TT): 5 m cable

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland9 Jumper- + SCSI cable  Polyimide + SCSI cable (LSZH) used for first 5 m of transmission for lower radiation doses to the service box electronics  Preliminary cable tests over show good performance of line receiver: eye pattern of ‘quasi- digital’ Beetle header

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland10 Digitizer Board  Key element of Service box, size 328 x 140 mm2  Only connection of any hybrid to the outside world  Receives data from one sensor ladder (3 or 4 Beetle chips)

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland11 Digitizer Board systems  Key components:  Differential line receiver  8 bit 40 MSPS ADC  CERN GOL serializer  2.5 Gbps VCSEL diode  Additional components:  1 QPLL chip for low-jitter clock generation close to GOLs  1 DCU25F chip for environmental monitoring (voltages, temperatures) clock distribution  Power, TTC signals, I2C slow control for hybrids are just passed through

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland12 Production of preseries  PCB company and assembly company chosen, will remain fixed for later prodcution of full quantities  17 digitizer boards have been produced (will be used in module test setup)  All BGA solder balls have been checked with X-ray to ensure reliable solder joints: no faulty solder joint among total of over balls  consider pad design compatible with BGA soldering  electronic design will stay 99% identical (except for minor bugfixes)

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland13 Service box backplane  Distribution of power, fast signals, slow control to digitizer boards  Conservative design: 4 layers, 6 mil technology  Only active components are L4913 LHC pos. voltage regulators and LVDS clock IC’s (tested to 70 krad)  Easy cooling via flat water- cooled heatsink  First prototypes (8 slots) being assembled, tests next week  Full backplane with 20 slots

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland14 Control Card  Under development by Universidade de Santiago de Compostela  Provides TTC signals and slow control interface of each Service box  Same size as Digitizer Board to fit into crate  Main components:  1 TTCrq mezzanine  2 SPECS slaves for slow control (I2C, temperature/humidity readout) TTCrq (CERN) SPECS slave (Orsay)

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland15 Radiation qualification  Expected radiation levels at service box location: <15 krad, <2E12 n/cm2 (1 MeV n eq.) for 10 year LHC running  AD8129 line receiver tested up to 300 krad, 2E14 n/cm2  TSA0801 ADC tested up to 60 krad (analogue and SEE test)  ULM-Photonics VCSEL tested up to 300 krad, 3.6E12 n/cm2  Fibre tested up to 2.2 Mrad  (CERN GOL, QPLL, DCU25F tested to several Mrad)  No failures of components  Only slightly decreased performance measured for line receiver and optical fibre, well within system design margins  All components qualified for use in service box

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland16 Optical power budget Min. laser power into fibre:-5.0 dBm Max. Fibre attenuation 100 m: 0.5 dB 3 optical cable interfaces max. 0.5 dB per interface: 1.5 dB Worst case average power at receiver: -7.0 dbm Worst case optical sensitivity SNAP12 receiver:-16.0 dBm Power margin: 9.0 dB

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland17 O-RX card (Uni Heidelberg)  Common LHCb effort lead by Physikalisches Institut, University Heidelberg  Optical input directly compatible to used MTP fibre (SNAP12 compatible multi-channel receiver, 2.5 Gbps)  12x TLK2501 deserializer  LHCClk x2 crystal oscillator on board  Preseries of 28 ordered, expected for October

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland18 BER testing, eye pattern  Dirk Wiedner (Heidelberg) made BER testing with pseudorandom data  3 days continous running (4E14 bits) without a single error  Check eye pattern of optical signal with 5 GHz opto-electric converter: clean open eye

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland19 TELL1 board (EPF Lausanne) Common LHCb Effort, lead by EPF Lausanne, preseries expected until end of the year 2 optical cables, 38 Gbit/s input bandwidth 2.4 Gbit/s output to CPU-farms Cluster finding, L1 derandomizer Data synchronizing and packing Credit Card PC

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland20 Conclusion + Outlook  Silicon sensors chosen and production lot ordered, first batches arrive Jan 2005  R&D for LHCb Silicon Tracker electronics complete  First round of preseries in production  Testing of full readout chain (detector + readout link + LHC timing hardware) in mechanical mock-up of TT station with pre-production hardware planned until end of the year  Series production for electronic modules will start in Q2/2005

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland21 ADC TID testing  TID Testing performed by injecting 5 MHz sinewave close to full scale and doing FFT analysis of digitized signal  Plot SFDR and SNR for duration of irradiation, idea: any unlinearity will show up in SFDR, any gain loss in SNR

LECC 2004, BostonA. Vollhardt, Universität Zürich/Switzerland22 ADC SEE testing  One ADC was connected to high limit (all ‘1’ at output), and one ADC to low limit (all ‘0’)  Both bytes were tested with logic gates in real time  For each bit flip: output pulsed, connect output to counter  All ADCs irradiated to 4.6E11 p/cm2  For the complete campaign (4 ADC10040, 4 TSA0801), one 1 SEU was found (‘1’ to ‘0’)