Beam Energy Programs in HIC Part I: Past Christoph Blume University of Frankfurt
Christoph Blume, Dubna Aug. 2012 Outline: Experiments Beam energy scan programs with heavy ions Part I: Past AGS: e.g. E895 SPS: NA49 (NA45, NA57) Part II: Present RHIC: STAR, PHENIX SPS: NA61 Part III: Future NICA: MPD FAIR: CBM Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 Outline: Physics Scan of the QCD phase diagram Search for the onset of deconfinement Locate the phase boundary to QGP Order of the phase transition (cross over ↔ 1st order) Search for the QCD critical point Systematic scan of relevant area in phase diagram Search for new QCD phases and exotica E.g. Quarkyonic matter Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 The QCD Phase Diagram Topic of this lecture Part of phase diagram with μB > 0 μB = 0: LHC physics Questions to experiments 1) Is it possible to locate the onset of deconfinement ? 2) Is there any evidence for a 1st order phase transition ? 3) Can one find any indication for a possible critical point ? RHIC SPS FAIR NICA Christoph Blume, Dubna Aug. 2012
Analogy: Phase Diagram of Water Cross over Critical point 1st order phase boundary Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 Beam Energy Scan Control parameter: √sNN Allows to scan different regions of phase diagram System freezes out at different positions along freeze-out curve Trajectory might cross critical area Variation of system size Program of NA61@SPS H. Stöcker, E.L. Bratkovskaya, M. Bleicher, S. Soff, and X. Zhu, JPG31, S929 (2005) Y.B. Ivanov, V.N. Russkikh, V.D. Tonnev, PRC73, 044904 (2006) 3-fluid hydro Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 Beam Energy Scan Region of high baryon density RHIC SPS FAIR / NICA (/ AGS) RHIC sNN = 5-200 GeV SPS sNN = 6–17 GeV AGS sNN = 2.7–5 GeV Christoph Blume, Dubna Aug. 2012
Alternating Gradient Synchrotron Christoph Blume, Dubna Aug. 2012
HIC Experiments at the AGS Beam Technology Observables E802 Si Single arm magnetic spectrometer Spectra (, p, K), HBT E810 TPCs in magnetic field Strangeness (K0s, ) E814 Magnetic spectrometer + calorimeters Spectra (p) + Et E859 E802 + 2nd level PID trigger Strangeness () E866 Au 2 magnetic spectrometers (TPC, TOF) Strangeness (Kaons) E877 Upgrade of E814 E891 Upgrade of E810 E895 EOS TPC E896 Drift chamber + neutron detector H0 Di-baryon, E910 EOS TPC + TOF p+A Collisions E917 Upgrade of E866 Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 The E895 Experiment Time Projection Chamber EOS-TPC Beam energy scan Au+Au 2.4 < √sNN < 4.8 GeV 2 < Elab < 10.8 A GeV Observables π±, p, K0s, Λ, Ξ- Spectra, HBT, directed and elliptic flow Christoph Blume, Dubna Aug. 2012
CERN Accelerator Complex Christoph Blume, Dubna Aug. 2012
CERN Accelerator Complex North Area SPS LHC West Area PS Christoph Blume, Dubna Aug. 2012
HIC Experiments at the SPS Beam Technology Observables NA34 16O, 32S Muon spectrometer + calorimeter Di-leptons, p, , K, NA35 Streamer chamber -, K0s, , HBT NA36 TPC K0s, NA38 Di-muon spectrometer (NA10) Di-leptons, J/ WA80/WA93 Calorimeter + Plastic Ball , 0, WA85 Mag. spectrometer with MWPCs K0s, , WA94 WA85 + Si strip detectors NA44 16O, 32S, 208Pb Single arm magnetic spectrometer , K, p NA45 Cherenkov + TPC Di-leptons (low mass) NA49 208Pb Large volume TPCs , K, p, K0s, , , , ... NA50 NA38 upgrade NA52 Beamline spectrometer Strangelets WA97 Mag. spectrometer with Si tracker h-, K0s, , , WA98 Pb-glass calorimeter + mag. spectrom. NA57 WA97 upgrade NA60 114In NA50 + Si vertex tracker Christoph Blume, Dubna Aug. 2012
Beam Energy Scan at the SPS Pb+Pb: 6.3 < √sNN < 17.3 GeV Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 The NA49 Experiment Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 The NA49 Experiment Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 The NA45 Experiment Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 The NA57 Experiment Christoph Blume, Dubna Aug. 2012
Baryon-Number Distributions yP yT y0 y’T y’p Lower energies: Higher energies: Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 How to Measure Them Net-proton distributions: Protons - Antiprotons - = Other contributions (neutrons, hyperons) usually ignored (difficult to measure) Christoph Blume, Dubna Aug. 2012
Energy Dependence of Net-Protons NA49 preliminary BRAHMS: PRL93, 102301 (2004) Christoph Blume, Dubna Aug. 2012
Energy Dependence of y RHIC (sNN = 200 GeV): E = 25.7 ± 2.1 TeV E/Nucleon = 72.0 ± 6.0 GeV Rapidity shift: Energy loss: Christoph Blume, Dubna Aug. 2012
Inelastic Energy per NN Collision Central data Energy of single net-baryon: Total inelastic energy per NN collision: Christoph Blume, Dubna Aug. 2012
Inelasticity of Heavy Ion Collisions Central data p+p Inelasticity: ⇒ ≈ 70% of available energy is transformed into particle production and expansion of fireball (p+p ≈ 50%) Christoph Blume, Dubna Aug. 2012
Rapidity Distributions of Baryons Central Pb+Pb, 158A GeV dn/dy (a.u.) y Net-protons: 3 valence Quarks (uud ) Omegas: 3 produced Quarks (sss ) Net s: 1 valence (d ) + 2 produced Quarks (ss ) Net s: 2 valence (ud ) + 1 produced Quark (s ) Christoph Blume, Dubna Aug. 2012
Antibaryon/Baryon Ratios √sNN dependence gets reduced with increasing strangeness content But even Ω-/Ω+ ratio not energy independent S = -3 S = -2 S = -1 S = 0 PRC78, 034918 (2008) Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 Particle Production Particle yields Lots of data on lighter particles (π, K, Λ) for central collisions (system size less well covered) Data on heavier particles (φ, Ξ, Ω) still relatively scarce Different energy dependences Steeper rise at low energies for K+ and Λ Interplay between net-baryon density and strangeness production AGS NA49 BRAHMS Christoph Blume, Dubna Aug. 2012
Major Strangeness Carriers: K and Λ Strangeness Conservation = Isospin Symmetry K0 (ds) K+ (us) K- (us) (uds) >> If baryon density is high Christoph Blume, Dubna Aug. 2012
Relative Strangeness Production Maximum around √sNN = 7-8 GeV Christoph Blume, Dubna Aug. 2012
Particle Production: Hyperons / − -/ +/ = 1.5 (+ + -) |y| < 0.4 |y| < 0.5 Christoph Blume, Dubna Aug. 2012
Particle Production: K/π Ratios Pronouned maximum for K+/π+ ratio (aka “The Horn”) Not described by transport models Sharper than early statistical model predictions Proposed as signature for the onset of deconfinement M. Gaździcki and M.I. Gorenstein, APPB30, 2705 (1999) Christoph Blume, Dubna Aug. 2012
Chemical Freeze-Out Curve Provides relation between T and μB Christoph Blume, Dubna Aug. 2012
Energy Dependence of T and B A. Andronic et al, NPA772 (2006), 167 Christoph Blume, Dubna Aug. 2012
Particle Production: Stat. Model Latest version of stat. model T(√sNN) and μB(√sNN) parameterized T and μB connected via freeze-out curve Better fit after introduction of additional high mass resonances (Hagedorn-res.) ⇒ Increase of pion yield Decrease of μB ⇒ maximum also in Λ/π A. Andronic et al., PLB673, 142 (2009) Christoph Blume, Dubna Aug. 2012
Strangeness in Heavy Ion Physics Strangeness enhancement as a QGP signature J. Rafelski and B. Müller, PRL48, 1066 (1982) P. Koch, B. Müller, and J. Rafelski, Phys. Rep. 142, 167 (1986) Strangeness has to be produced (no s-Quarks in nucleons) Thresholds are high in hadronic reactions E.g..: N + N N + K+ + (Ethres 700 MeV) Fast equilibration in a QGP via partonic processes E.g. gluon-fusion ⇒ Enhancement of strange particle production in A+A relative to p+p expected (in particular multi-strange particles) Christoph Blume, Dubna Aug. 2012
Strangeness Enhancement √sNN (GeV) Contrary to naive expectation Same behavior for multi-strange particles? More data needed Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 QGP Signature ? Is it a dominantly partonic effect or can hadronic processes lead to the same fast equilibration? Multi-meson fusion processes C. Greiner and S. Leupold, J. Phys. G 27, L95 (2001) Dynamic equilibration at the phase boundary? T-μB freeze-out curve follows phase boundaries (QGP or quarkyonic matter) P. Braun-Munzinger, J. Stachel, and C. Wetterich, Phys. Lett. B 596, 61 (2004) Hadronization generally a statistical phenomenon? U. Heinz, Nucl. Phys. A 638, 357c (1998), R. Stock, Phys. Lett. B 456, 277 (1999) Christoph Blume, Dubna Aug. 2012
Radial Expansion and mt-Spectra 1/mT dN/dmT mT 1/mT dN/dmT No radial flow: exponential spectrum (p+p collisions) With radial flow: add. boost by expansion (vT) ⇒ blue shifted spectrum Christoph Blume, Dubna Aug. 2012
mt-Spectra: Charged Kaons Sudden change in the Kaon slope parameters (aka “The Step”) Evolution of radial flow changes around √sNN = 7-8 GeV Difficult to model in hadronic transport models Indication for a change of Equation of State (EOS) ? Christoph Blume, Dubna Aug. 2012
Energy Dependence of 〈mT〉 NA49: PRC77, 024903 (2008) Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 The QCD Phase Diagram K. Rajagopal, CPOD Conference 09 Christoph Blume, Dubna Aug. 2012
Critical Point Predictions Lattice QCD calculation at finite μB Z. Fodor and S. Katz JHEP 0404, 050 (2004) But current predictions scatter quite a lot The CP might even not exist at all ... P. de Forcrand and O. Philipsen, JHEP01, 077 (2007) M. Stephanov, CPOD conference 09 Christoph Blume, Dubna Aug. 2012
Critical Point Predictions Larger critical area possible Y. Hatta and T. Ikeda, PRD67, 014028 (2003) Focusing effect Proximity of critical point might influence isentropic trajectories M. Askawa et al., PRL101, 122302 (2008) Christoph Blume, Dubna Aug. 2012
Critical Point Observables Critical opalescence Correlation lengths and susceptibilities diverge Heavy ion reactions System size limited ⇒ critical region Correlation length ξ ≈ radius of system Enhanced fluctuations Multiplicity Average pt Particle ratios Conserved quantities Strangeness S Baryon number B Charge Q Higher moments more sensitive M. Cheng et al., PRD79, 074505 (2009) μB = 0 Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 Fluctuations Probe the medium response (susceptibilities) Study of hadronization properties Might be sensitive to QGP phase Hadron gas reacts differently than QGP Different number of degrees of freedom Nature of the phase transition Order of the transition (cross over ⇔ 1st order) Existence of critical point ⇒ sudden increase of fluctuations Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 Fluctuations Charged multiplicity n Extensive quantity tight centrality selection (1%) to reduce volume fluctuations Scaled variance Energy dependence of Data narrower than Poisson ( < 1) Trend reproduced by UrQMD Pb+Pb, 158A GeV 1 < y < ybeam Christoph Blume, Dubna Aug. 2012
Comparison to CP Expectations Average pt fluctuations Quantified by Φpt Multiplicity fluctuations Quantified by scaled variance No √sNN dependence seen Critical point expectation central Pb+Pb K. Grebieszkow, SQM11 B from stat. model fit: F. Becattini et al., PRC73, 044905 (2006) Position of critical point: Z. Fodor and S. Katz JHEP 0404, 050 (2004) Amplitude of fluct. : M. Stephanov et al. PRD60, 114028 (1999) Width of critical region: Y. Hatta and T. Ikeda, PRD67, 014028 (2003) NA49, PRC79, 044904 (2009) Christoph Blume, Dubna Aug. 2012
Particle Ratio Fluctuations Examples: K/π, p/π, K/p Dynamical fluctuations quantified relative to mixed events reference S/B fluctuation as QGP signal V. Koch, A. Majumder, and J. Randrup, PRL95, 182301 (2005) T < Tc: S and B can be unrelated (Kaons: S = -1, B = 0) T > Tc: S and B are correlated (s-Quark: S = -1, B = 1/3) Experimentally: K/p fluctuations Christoph Blume, Dubna Aug. 2012
Particle Ratio Fluctuations Comparison NA49 ↔ STAR Good agreement for p/π Deviations for K/π + K/p at lowest √sNN Likely due to different acceptances: K/π NA49, PRC83, 061902 (2011) NA49, PRC79, 044910 (2009) STAR, PRL103, 092301 (2009) p/π T. Tarnowsky, SQM11 J. Tian, SQM11 T. Schuster, QM11 K/p Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 Summary Part I Beam energy scans at AGS and SPS Produced already a substantial amount of data Baseline for ongoing and future programs Main observations Strong variation of net-baryon density ⇒ change of μB Maximum of relative strangeness production around √sNN = 7-8 GeV Sharp maximum in K+/π+ ratio. Interpretation? Evolution of radial flow changes around √sNN = 7-8 GeV No evidence for critical point yet (first attempts) Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012
Center-of-Mass Energy Center-of-mass energy in nucleon-nucleon system: One particle in rest (fixed target): Example: p+p at the SPS (450 GeV beam energy): ⇒ Fixed target: √s = 29.1 GeV ⇒ Collider: √s = 900 GeV Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 Luminosity L Na(b) = number of particles per bunch j = number of bunches v = velocity of the bunches u = circumference of collider A = beam cross section at collision point Christoph Blume, Dubna Aug. 2012
Time Projection Chamber: ALICE Field cage Readout chamber E-Field 510 cm HV electrode (100 kV) Volume: 88 m3 Drifttime 93 μs #channels: 570132 Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 ALICE-TPC Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 TPC Readout Christoph Blume, Dubna Aug. 2012
Specific Energy Loss dE/dx Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 Bethe-Bloch Equation Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 dE/dx-Measurement Christoph Blume, Dubna Aug. 2012
Christoph Blume, Dubna Aug. 2012 Weak Decay Topologies V0 Topology (K0s, Λ): Ξ- (Cascade) Ω- Topology: Christoph Blume, Dubna Aug. 2012
Strangeness Production in π+p - K0 p + Associated production: Christoph Blume, Dubna Aug. 2012
Reconstruction via Decay Topology NA49 NA57 NA57 Christoph Blume, Dubna Aug. 2012
Armenteros-Podolanski Plot Christoph Blume, Dubna Aug. 2012
Invariant Mass Spectra (K0s, -, - ) Entries minv(+,-) (GeV/c2) Entries - K0s Christoph Blume, Dubna Aug. 2012