Christoph Blume, Dubna Aug. 2012

Slides:



Advertisements
Similar presentations
1 Gianluca Usai – University of Cagliari and INFN Electromagnetic Probes of Strongly interacting Matter in ECT* Trento - 23/05/2013 The QCD phase diagram.
Advertisements

Mass, Quark-number, Energy Dependence of v 2 and v 4 in Relativistic Nucleus- Nucleus Collisions Yan Lu University of Science and Technology of China Many.
Physics Results of the NA49 exp. on Nucleus – Nucleus Collisions at SPS Energies P. Christakoglou, A. Petridis, M. Vassiliou Athens University HEP2006,
First Alice Physics Week, Erice, Dec 4  9, Heavy  Flavor (c,b) Collectivity at RHIC and LHC Kai Schweda, University of Heidelberg A. Dainese,
Marcus Bleicher, Florence 2006 Longitudinal Flow and Onset of Deconfinement Marcus Bleicher Institut für Theoretische Physik Goethe Universität Frankfurt.
Particle Production in p + p Reactions at GeV K. Hagel Cyclotron Institute Texas A & M University for the BRAHMS Collaboration.
DNP03, Tucson, Oct 29, Kai Schweda Lawrence Berkeley National Laboratory for the STAR collaboration Hadron Yields, Hadrochemistry, and Hadronization.
Relativistic Heavy Ions Experiment II Global Observables.
P.Seyboth: Indications for the onset of deconfinement in Pb+Pb collisions at the CERN SPS from NA49 (ISMD2004) 1 Indications for the Onset of Deconfinement.
STAR STRANGENESS! K0sK0s    K+K+ (Preliminary)         
Nu XuInternational Conference on Strangeness in Quark Matter, UCLA, March , 20061/20 Search for Partonic EoS in High-Energy Nuclear Collisions Nu.
Relativistic Heavy Ions Experiment III Strangeness and Heavy Flavour.
Experimental Results for Fluctuations And Correlations as a Signature of QCD Phase Transitions in Heavy Ion Collisions Gary Westfall Michigan State University,
Relativistic Heavy Ions Experiment I. The QCD Phasediagram.
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
K/π and p/π Fluctuations 25 th Winter Workshop on Nuclear Dynamics February 2, 2009 Gary Westfall Michigan State University For the STAR Collaboration.
Supriya Das SQM 2006, 26th March 2006, UCLA 1 Event By Event Fluctuation in K/  ratio atRHIC Supriya Das § VECC, Kolkata (for STAR Collaboration) § Present.
Hadronic Resonances in Heavy-Ion Collisions at ALICE A.G. Knospe for the ALICE Collaboration The University of Texas at Austin 25 July 2013.
Nu Xu1/17 24 th CBM Collaboration Meeting, Krakow, Poland, September 8 – 12, 2014 Study the QCD Phase Structure at the High Baryon Density Nu Xu (1,2)
ISMD31 / Sept. 4, 2001 Toru Sugitate / Hiroshima Univ. The 31 st International Symposium on Multiparticle Dynamics on 1-7, Sept in Datong, China.
Particle Spectra at AGS, SPS and RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen Similarities and differences Rapidity distributions –net.
Masashi Kaneta, LBNL Masashi Kaneta for the STAR collaboration Lawrence Berkeley National Lab. First results from STAR experiment at RHIC - Soft hadron.
1 Identified particle production in the Beam Energy Scan from STAR Anthony Timmins for the STAR Collaboration  The Beam energy scan  The STAR experiment.
Nu Xu1/20 ”ATHIC2012“, Pusan, Korea, November , 2012 QCD in the Twenty-First Century (1)Higgs (-like) Particle – - Origin of Mass, QCD dof - Standard.
In-Kwon YOO Pusan National University Busan, Republic of KOREA SPS Results Review.
Beam Energy Programs in HIC Part II: Present Christoph Blume University of Frankfurt.
20 Nov 2006, Quark Matter, Shanghai, ChinaShinIchi Esumi, Univ. of Tsukuba1 Rapporteur 3 Bulk Properties and Collective Phenomena ShinIchi Esumi Univ.
STAR Strangeness production and Cronin effect in d+Au collisions at √s NN = 200 GeV in STAR For the STAR Collaboration Xianglei Zhu (Tsinghua U / UCLA)
Grazyna Odyniec STAR physics program and technical challenges with the RHIC Au+Au energy scan Grazyna Odyniec/LBNL for STAR collaboration QM 2008, Jaipur,
Higher moments of net-charge multiplicity distributions at RHIC energies in STAR Nihar R. Sahoo, VECC, India (for the STAR collaboration) 1 Nihar R. Sahoo,
Third Moments of Conserved Charges in Phase Diagram of QCD Masakiyo Kitazawa (Osaka Univ.) M. Asakawa, S. Ejiri and MK, PRL103, (2009). Baryons’10,
Charged Hadron Nuclear Modification Factors in the Beam Energy Scan data from STAR Stephen Horvat for the STAR collaboration Yale University Stephen HorvatCPOD.
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
Statistical Model Predictions for p+p and Pb+Pb Collisions at LHC Ingrid Kraus Nikhef and TU Darmstadt.
Lecture 10 : Statistical thermal model Hadron multiplicities and their correlations and fluctuations (event-by-event) are observables which can provide.
Study the particle ratio fluctuations in heavy- ion collisions Limin Fan ( 樊利敏 ) Central China Normal University (CCNU) 1.
Summer Student Practice, Dubna, 2009 Analysis of UrQMD Data Obtained for Relativistic Au+Au Collisions at 17.3 GeV for STAR detector F. Nemulodi, M.W.
1 Jeffery T. Mitchell – Quark Matter /17/12 The RHIC Beam Energy Scan Program: Results from the PHENIX Experiment Jeffery T. Mitchell Brookhaven.
Search for the QCD Critical Point Gary D. Westfall Michigan State University For the STAR Collaboration Gary Westfall for STAR – Erice,
Hadron Collider Physics 2012, 12/Nov/2012, KyotoShinIchi Esumi, Univ. of Tsukuba1 Heavy Ion results from RHIC-BNL ShinIchi Esumi Univ. of Tsukuba Contents.
Masashi Kaneta, First joint Meeting of the Nuclear Physics Divisions of APS and JPS 1 / Masashi Kaneta LBNL
ALICE Overview Ju Hwan Kang (Yonsei) Heavy Ion Meeting June 10, 2011 Korea University, Seoul, Korea.
Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase.
Robert Pak (BNL) 2012 RHIC & AGS Annual Users' Meeting 0 Energy Ro Robert Pak for PHENIX Collaboration.
Christoph Blume University of Heidelberg
Search for QCD Critical Point at RHIC Bedanga Mohanty National Institute of Science Education and Research (NISER) Outline:  Phase diagram of QCD  Observables.
Results from an Integrated Boltzmann+Hydrodynamics Approach WPCF 2008, Krakau, Jan Steinheimer-Froschauer, Universität Frankfurt.
R ECENT RESULTS ON EVENT - BY - EVENT FLUCTUATIONS FROM RHIC BEAM ENERGY SCAN PROGRAM AT STAR EXPERIMENT Nihar R. Sahoo (for the STAR Collaboration) Texas.
Christina Markert Hot Quarks, Sardinia, Mai Christina Markert Kent State University Motivation Resonance in hadronic phase Time R AA and R dAu Elliptic.
Hadronic resonance production in Pb+Pb collisions from the ALICE experiment Anders Knospe on behalf of the ALICE Collaboration The University of Texas.
BNL/ Tatsuya CHUJO JPS RHIC symposium, Chuo Univ., Tokyo Hadron Production at RHIC-PHENIX Tatsuya Chujo (BNL) for the PHENIX Collaboration.
Bulk properties at RHIC Olga Barannikova (Purdue University) Motivation Freeze-out properties at RHIC STAR perspective STAR  PHENIX, PHOBOS Time-span.
Helmut Oeschler Darmstadt University of Technology Transition from Baryonic to Mesonic Freeze Out SQM2006, March 28 th, 2006.
Christina MarkertHirschegg, Jan 16-22, Resonance Production in Heavy Ion Collisions Christina Markert, Kent State University Resonances in Medium.
Helen Caines Yale University Strasbourg - May 2006 Strangeness and entropy.
1 M. Gazdzicki Frankfurt, Kielce Observation of the onset of deconfinement and Search for the critical point Past and future of the ion physics at the.
PACIAE model analysis of particle ratio fluctuations in heavy-ion collisions Limin Fan ( 樊利敏 ) Central China Normal University (CCNU) 1 第十五届全国核物理大会.
PHENIX Results from the RHIC Beam Energy Scan Brett Fadem for the PHENIX Collaboration Winter Workshop on Nuclear Dynamics 2016.
Energy Dependence of Soft Hadron Production Christoph Blume2nd International Workshop on the Critical Point and Onset of Deconfinement Bergen Mar. 30 -
Strange hadrons and resonances at LHC energies with the ALICE detector INPC 2013 Firenze, Italy 2 -7 June 2013 A. Badalà (INFN Sezione di Catania) for.
1 Strange Resonance Production in p+p and Au+Au Collisions at RHIC energies. Christina Markert, Yale University for the STAR Collaboration QM2004,
Review of Structures in the Energy Dependence of Hadronic Observables Christoph BlumeInt. Workshop on Critical Point and Onset of Deconfinement Florence,
Phase transitions and critical fluctuations
Search for the critical point of strongly interacting matter
NA61/SHINE: status and energy scans with Pb+Pb collisions
Christoph Blume University of Heidelberg
Collective Dynamics at RHIC
Understanding the Properties of Chemical Freeze-Out
Heavy Ion Physics at NICA Simulations G. Musulmanbekov, V
Production of Multi-Strange Hyperons at FAIR Energies.
Presentation transcript:

Beam Energy Programs in HIC Part I: Past Christoph Blume University of Frankfurt

Christoph Blume, Dubna Aug. 2012 Outline: Experiments Beam energy scan programs with heavy ions Part I: Past AGS: e.g. E895 SPS: NA49 (NA45, NA57) Part II: Present RHIC: STAR, PHENIX SPS: NA61 Part III: Future NICA: MPD FAIR: CBM Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 Outline: Physics Scan of the QCD phase diagram Search for the onset of deconfinement Locate the phase boundary to QGP Order of the phase transition (cross over ↔ 1st order) Search for the QCD critical point Systematic scan of relevant area in phase diagram Search for new QCD phases and exotica E.g. Quarkyonic matter Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 The QCD Phase Diagram Topic of this lecture Part of phase diagram with μB > 0 μB = 0: LHC physics Questions to experiments 1) Is it possible to locate the onset of deconfinement ? 2) Is there any evidence for a 1st order phase transition ? 3) Can one find any indication for a possible critical point ? RHIC SPS FAIR NICA Christoph Blume, Dubna Aug. 2012

Analogy: Phase Diagram of Water Cross over Critical point 1st order phase boundary Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 Beam Energy Scan Control parameter: √sNN Allows to scan different regions of phase diagram System freezes out at different positions along freeze-out curve Trajectory might cross critical area Variation of system size Program of NA61@SPS H. Stöcker, E.L. Bratkovskaya, M. Bleicher, S. Soff, and X. Zhu, JPG31, S929 (2005) Y.B. Ivanov, V.N. Russkikh, V.D. Tonnev, PRC73, 044904 (2006) 3-fluid hydro Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 Beam Energy Scan Region of high baryon density RHIC SPS FAIR / NICA (/ AGS) RHIC sNN = 5-200 GeV SPS sNN = 6–17 GeV AGS sNN = 2.7–5 GeV Christoph Blume, Dubna Aug. 2012

Alternating Gradient Synchrotron Christoph Blume, Dubna Aug. 2012

HIC Experiments at the AGS Beam Technology Observables E802 Si Single arm magnetic spectrometer Spectra (, p, K), HBT E810 TPCs in magnetic field Strangeness (K0s, ) E814 Magnetic spectrometer + calorimeters Spectra (p) + Et E859 E802 + 2nd level PID trigger Strangeness () E866 Au 2 magnetic spectrometers (TPC, TOF) Strangeness (Kaons) E877 Upgrade of E814 E891 Upgrade of E810 E895 EOS TPC E896 Drift chamber + neutron detector H0 Di-baryon,  E910 EOS TPC + TOF p+A Collisions E917 Upgrade of E866 Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 The E895 Experiment Time Projection Chamber EOS-TPC Beam energy scan Au+Au 2.4 < √sNN < 4.8 GeV 2 < Elab < 10.8 A GeV Observables π±, p, K0s, Λ, Ξ- Spectra, HBT, directed and elliptic flow Christoph Blume, Dubna Aug. 2012

CERN Accelerator Complex Christoph Blume, Dubna Aug. 2012

CERN Accelerator Complex North Area SPS LHC West Area PS Christoph Blume, Dubna Aug. 2012

HIC Experiments at the SPS Beam Technology Observables NA34 16O, 32S Muon spectrometer + calorimeter Di-leptons, p, , K,  NA35 Streamer chamber -, K0s, , HBT NA36 TPC K0s,  NA38 Di-muon spectrometer (NA10) Di-leptons, J/ WA80/WA93 Calorimeter + Plastic Ball , 0,  WA85 Mag. spectrometer with MWPCs K0s, ,  WA94 WA85 + Si strip detectors NA44 16O, 32S, 208Pb Single arm magnetic spectrometer , K, p NA45 Cherenkov + TPC Di-leptons (low mass) NA49 208Pb Large volume TPCs , K, p, K0s, , , , ... NA50 NA38 upgrade NA52 Beamline spectrometer Strangelets WA97 Mag. spectrometer with Si tracker h-, K0s, , ,  WA98 Pb-glass calorimeter + mag. spectrom. NA57 WA97 upgrade NA60 114In NA50 + Si vertex tracker Christoph Blume, Dubna Aug. 2012

Beam Energy Scan at the SPS Pb+Pb: 6.3 < √sNN < 17.3 GeV Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 The NA49 Experiment Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 The NA49 Experiment Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 The NA45 Experiment Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 The NA57 Experiment Christoph Blume, Dubna Aug. 2012

Baryon-Number Distributions yP yT y0 y’T y’p Lower energies: Higher energies: Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 How to Measure Them Net-proton distributions: Protons - Antiprotons - = Other contributions (neutrons, hyperons) usually ignored (difficult to measure) Christoph Blume, Dubna Aug. 2012

Energy Dependence of Net-Protons NA49 preliminary BRAHMS: PRL93, 102301 (2004) Christoph Blume, Dubna Aug. 2012

Energy Dependence of y RHIC (sNN = 200 GeV): E = 25.7 ± 2.1 TeV E/Nucleon = 72.0 ± 6.0 GeV Rapidity shift: Energy loss: Christoph Blume, Dubna Aug. 2012

Inelastic Energy per NN Collision Central data Energy of single net-baryon: Total inelastic energy per NN collision: Christoph Blume, Dubna Aug. 2012

Inelasticity of Heavy Ion Collisions Central data  p+p Inelasticity: ⇒ ≈ 70% of available energy is transformed into particle production and expansion of fireball (p+p ≈ 50%) Christoph Blume, Dubna Aug. 2012

Rapidity Distributions of Baryons Central Pb+Pb, 158A GeV dn/dy (a.u.) y Net-protons: 3 valence Quarks (uud ) Omegas: 3 produced Quarks (sss ) Net s: 1 valence (d ) + 2 produced Quarks (ss ) Net s: 2 valence (ud ) + 1 produced Quark (s ) Christoph Blume, Dubna Aug. 2012

Antibaryon/Baryon Ratios √sNN dependence gets reduced with increasing strangeness content But even Ω-/Ω+ ratio not energy independent S = -3 S = -2 S = -1 S = 0 PRC78, 034918 (2008) Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 Particle Production Particle yields Lots of data on lighter particles (π, K, Λ) for central collisions (system size less well covered) Data on heavier particles (φ, Ξ, Ω) still relatively scarce Different energy dependences Steeper rise at low energies for K+ and Λ Interplay between net-baryon density and strangeness production AGS NA49 BRAHMS Christoph Blume, Dubna Aug. 2012

Major Strangeness Carriers: K and Λ Strangeness Conservation  = Isospin Symmetry K0 (ds) K+ (us)  K- (us)  (uds) >>  If baryon density is high Christoph Blume, Dubna Aug. 2012

Relative Strangeness Production Maximum around √sNN = 7-8 GeV Christoph Blume, Dubna Aug. 2012

Particle Production: Hyperons / − -/ +/  = 1.5 (+ + -) |y| < 0.4 |y| < 0.5 Christoph Blume, Dubna Aug. 2012

Particle Production: K/π Ratios Pronouned maximum for K+/π+ ratio (aka “The Horn”) Not described by transport models Sharper than early statistical model predictions Proposed as signature for the onset of deconfinement M. Gaździcki and M.I. Gorenstein, APPB30, 2705 (1999) Christoph Blume, Dubna Aug. 2012

Chemical Freeze-Out Curve Provides relation between T and μB Christoph Blume, Dubna Aug. 2012

Energy Dependence of T and B A. Andronic et al, NPA772 (2006), 167 Christoph Blume, Dubna Aug. 2012

Particle Production: Stat. Model Latest version of stat. model T(√sNN) and μB(√sNN) parameterized T and μB connected via freeze-out curve Better fit after introduction of additional high mass resonances (Hagedorn-res.) ⇒ Increase of pion yield Decrease of μB ⇒ maximum also in Λ/π A. Andronic et al., PLB673, 142 (2009) Christoph Blume, Dubna Aug. 2012

Strangeness in Heavy Ion Physics Strangeness enhancement as a QGP signature J. Rafelski and B. Müller, PRL48, 1066 (1982) P. Koch, B. Müller, and J. Rafelski, Phys. Rep. 142, 167 (1986) Strangeness has to be produced (no s-Quarks in nucleons) Thresholds are high in hadronic reactions E.g..: N + N  N + K+ +  (Ethres  700 MeV) Fast equilibration in a QGP via partonic processes E.g. gluon-fusion ⇒ Enhancement of strange particle production in A+A relative to p+p expected (in particular multi-strange particles) Christoph Blume, Dubna Aug. 2012

Strangeness Enhancement √sNN (GeV) Contrary to naive expectation Same behavior for multi-strange particles? More data needed Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 QGP Signature ? Is it a dominantly partonic effect or can hadronic processes lead to the same fast equilibration? Multi-meson fusion processes C. Greiner and S. Leupold, J. Phys. G 27, L95 (2001) Dynamic equilibration at the phase boundary? T-μB freeze-out curve follows phase boundaries (QGP or quarkyonic matter) P. Braun-Munzinger, J. Stachel, and C. Wetterich, Phys. Lett. B 596, 61 (2004) Hadronization generally a statistical phenomenon? U. Heinz, Nucl. Phys. A 638, 357c (1998), R. Stock, Phys. Lett. B 456, 277 (1999) Christoph Blume, Dubna Aug. 2012

Radial Expansion and mt-Spectra 1/mT dN/dmT mT 1/mT dN/dmT No radial flow: exponential spectrum (p+p collisions) With radial flow: add. boost by expansion (vT) ⇒ blue shifted spectrum Christoph Blume, Dubna Aug. 2012

mt-Spectra: Charged Kaons Sudden change in the Kaon slope parameters (aka “The Step”) Evolution of radial flow changes around √sNN = 7-8 GeV Difficult to model in hadronic transport models Indication for a change of Equation of State (EOS) ? Christoph Blume, Dubna Aug. 2012

Energy Dependence of 〈mT〉 NA49: PRC77, 024903 (2008) Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 The QCD Phase Diagram K. Rajagopal, CPOD Conference 09 Christoph Blume, Dubna Aug. 2012

Critical Point Predictions Lattice QCD calculation at finite μB Z. Fodor and S. Katz JHEP 0404, 050 (2004) But current predictions scatter quite a lot The CP might even not exist at all ... P. de Forcrand and O. Philipsen, JHEP01, 077 (2007) M. Stephanov, CPOD conference 09 Christoph Blume, Dubna Aug. 2012

Critical Point Predictions Larger critical area possible Y. Hatta and T. Ikeda, PRD67, 014028 (2003) Focusing effect Proximity of critical point might influence isentropic trajectories M. Askawa et al., PRL101, 122302 (2008) Christoph Blume, Dubna Aug. 2012

Critical Point Observables Critical opalescence Correlation lengths and susceptibilities diverge Heavy ion reactions System size limited ⇒ critical region Correlation length ξ ≈ radius of system Enhanced fluctuations Multiplicity Average pt Particle ratios Conserved quantities Strangeness S Baryon number B Charge Q Higher moments more sensitive M. Cheng et al., PRD79, 074505 (2009) μB = 0 Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 Fluctuations Probe the medium response (susceptibilities) Study of hadronization properties Might be sensitive to QGP phase Hadron gas reacts differently than QGP Different number of degrees of freedom Nature of the phase transition Order of the transition (cross over ⇔ 1st order) Existence of critical point ⇒ sudden increase of fluctuations Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 Fluctuations Charged multiplicity n Extensive quantity tight centrality selection (1%) to reduce volume fluctuations Scaled variance  Energy dependence of  Data narrower than Poisson ( < 1) Trend reproduced by UrQMD Pb+Pb, 158A GeV 1 < y < ybeam Christoph Blume, Dubna Aug. 2012

Comparison to CP Expectations Average pt fluctuations Quantified by Φpt Multiplicity fluctuations Quantified by scaled variance No √sNN dependence seen Critical point expectation central Pb+Pb K. Grebieszkow, SQM11 B from stat. model fit: F. Becattini et al., PRC73, 044905 (2006) Position of critical point: Z. Fodor and S. Katz JHEP 0404, 050 (2004) Amplitude of fluct. : M. Stephanov et al. PRD60, 114028 (1999) Width of critical region: Y. Hatta and T. Ikeda, PRD67, 014028 (2003) NA49, PRC79, 044904 (2009) Christoph Blume, Dubna Aug. 2012

Particle Ratio Fluctuations Examples: K/π, p/π, K/p Dynamical fluctuations quantified relative to mixed events reference S/B fluctuation as QGP signal V. Koch, A. Majumder, and J. Randrup, PRL95, 182301 (2005) T < Tc: S and B can be unrelated (Kaons: S = -1, B = 0) T > Tc: S and B are correlated (s-Quark: S = -1, B = 1/3) Experimentally: K/p fluctuations Christoph Blume, Dubna Aug. 2012

Particle Ratio Fluctuations Comparison NA49 ↔ STAR Good agreement for p/π Deviations for K/π + K/p at lowest √sNN Likely due to different acceptances: K/π NA49, PRC83, 061902 (2011) NA49, PRC79, 044910 (2009) STAR, PRL103, 092301 (2009) p/π T. Tarnowsky, SQM11 J. Tian, SQM11 T. Schuster, QM11 K/p Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 Summary Part I Beam energy scans at AGS and SPS Produced already a substantial amount of data Baseline for ongoing and future programs Main observations Strong variation of net-baryon density ⇒ change of μB Maximum of relative strangeness production around √sNN = 7-8 GeV Sharp maximum in K+/π+ ratio. Interpretation? Evolution of radial flow changes around √sNN = 7-8 GeV No evidence for critical point yet (first attempts) Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012

Center-of-Mass Energy Center-of-mass energy in nucleon-nucleon system: One particle in rest (fixed target): Example: p+p at the SPS (450 GeV beam energy): ⇒ Fixed target: √s = 29.1 GeV ⇒ Collider: √s = 900 GeV Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 Luminosity L Na(b) = number of particles per bunch j = number of bunches v = velocity of the bunches u = circumference of collider A = beam cross section at collision point Christoph Blume, Dubna Aug. 2012

Time Projection Chamber: ALICE Field cage Readout chamber E-Field 510 cm HV electrode (100 kV) Volume: 88 m3 Drifttime 93 μs #channels: 570132 Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 ALICE-TPC Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 TPC Readout Christoph Blume, Dubna Aug. 2012

Specific Energy Loss dE/dx Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 Bethe-Bloch Equation Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 dE/dx-Measurement Christoph Blume, Dubna Aug. 2012

Christoph Blume, Dubna Aug. 2012 Weak Decay Topologies V0 Topology (K0s, Λ): Ξ- (Cascade) Ω- Topology: Christoph Blume, Dubna Aug. 2012

Strangeness Production in π+p -  K0 p + Associated production: Christoph Blume, Dubna Aug. 2012

Reconstruction via Decay Topology NA49 NA57 NA57 Christoph Blume, Dubna Aug. 2012

Armenteros-Podolanski Plot Christoph Blume, Dubna Aug. 2012

Invariant Mass Spectra (K0s, -, - ) Entries minv(+,-) (GeV/c2) Entries - K0s Christoph Blume, Dubna Aug. 2012