А.Б.Курепин – ИЯИ РАН Исследования по релятивистской ядерной физике ИТЭФ, 23.11.11.

Slides:



Advertisements
Similar presentations
Charm and beauty with ALICE at LHC
Advertisements

1 Gianluca Usai – University of Cagliari and INFN Electromagnetic Probes of Strongly interacting Matter in ECT* Trento - 23/05/2013 The QCD phase diagram.
Mass, Quark-number, Energy Dependence of v 2 and v 4 in Relativistic Nucleus- Nucleus Collisions Yan Lu University of Science and Technology of China Many.
Jet probes of nuclear collisions: From RHIC to LHC Dan Magestro, The Ohio State University Midwest Critical Mass October 21-22, 2005.
K*(892) Resonance Production in Au+Au and Cu+Cu Collisions at  s NN = 200 GeV & 62.4 GeV Motivation Analysis and Results Summary 1 Sadhana Dash Institute.
Bingchu Huang, USTC/BNL 1 Bingchu Huang (for STAR Collaboration) University of Science and Technology of China (USTC) Brookhaven National Laboratory (BNL)
Centauro and STrange Object Research (CASTOR) - A specialized detector system dedicated to the search for Centauros and Strangelets in the baryon dense,
A probe for hot & dense nuclear matter. Lake Louise Winter Institute 21 February, 2000 Manuel Calderón de la Barca Sánchez.
Winter Workshop on Nuclear Dynamics, Heavy Ion Physics with CMS: Day-One Measurements Olga Barannikova for the CMS Collaboration.
Henrik Tydesjö May O UTLINE - The Quark Gluon Plasma - The Relativistic Heavy Ion Collider (RHIC) The PHENIX Experiment - QGP Signals Event-by-Event.
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
1 The CMS Heavy Ion Program Michael Murray Kansas.
Open Charm Everard CORDIER (Heidelberg) Grako meeting HD, April 28, 2006Everard Cordier.
Supriya Das SQM 2006, 26th March 2006, UCLA 1 Event By Event Fluctuation in K/  ratio atRHIC Supriya Das § VECC, Kolkata (for STAR Collaboration) § Present.
SQM2006, 03/27/2006Haibin Zhang1 Heavy Flavor Measurements at STAR Haibin Zhang Brookhaven National Laboratory for the STAR Collaboration.
Vector meson study for the CBM experiment at FAIR/GSI Anna Kiseleva GSI Germany, PNPI Russia   Motivation   The muon detection system of CBM   Vector.
1 J.M. Heuser et al. CBM Silicon Tracker Requirements for the Silicon Tracking System of CBM Johann M. Heuser, M. Deveaux (GSI) C. Müntz, J. Stroth (University.
PHENIX Fig1. Phase diagram Subtracted background Subtracted background Red point : foreground Blue point : background Low-mass vector mesons (ω,ρ,φ) ~
HFT + TOF: Heavy Flavor Physics Yifei Zhang University of Science & Technology of China Lawrence Berkeley National Lab TOF Workshop, Hangzhou, April,
Nov2,2001High P T Workshop, BNL Julia Velkovska High pt Hadrons from  sNN = 130 GeV Au-Au collisions measured in PHENIX Julia Velkovska (BNL) for PHENIX.
The Physics of CBM Volker Friese GSI Darmstadt CBM-China Workshop, Beijing, 2 November 2009.
12/12/2010 LHC First Data 2010 – Ann Arbor, USA J.L. Klay 1 A first glimpse down the rabbit hole: status of ALICE after one year Jennifer Klay California.
Single Electron Measurements at RHIC-PHENIX T. Hachiya Hiroshima University For the PHENIX Collaboration.
An experimental perspective on first jet measurements at LHC: Lessons from RHIC Dan Magestro, The Ohio State University ALICE-USA Collaboration Meeting.
In-Kwon YOO Pusan National University Busan, Republic of KOREA SPS Results Review.
Charmonium feasibility study F. Guber, E. Karpechev, A.Kurepin, A. Maevskaia Institute for Nuclear Research RAS, Moscow CBM collaboration meeting 11 February.
Применение MAPD (Zecotek) в адронных калориметрах и многоканальных времяпролетных системах в экспериментах по релятивистской ядерной физике Ф.Ф.Губер,
STAR Physics Program with the TOF Nu Xu for the STAR Collaboration Nuclear Science Division Lawrence Berkeley National Laboratory.
Heavy flavour capabilities with the ALICE TRD Benjamin Dönigus ISNP 2008 Erice/Sicily.
Di-electron measurements with HADES at SIS100 Motivation Motivation HADES di-electron results (SIS 18) - summary HADES di-electron results (SIS 18) - summary.
G. Musulmanbekov, K. Gudima, D.Dryablov, V.Geger, E.Litvinenko, V.Voronyuk, M.Kapishin, A.Zinchenko, V.Vasendina Physics Priorities at NICA/MPD.
A.N.Sissakian, A.S.Sorin Very High Multiplicity Physics Seventh International Workshop JINR, Dubna, September 18, 2007 Status of the project NICA/MPD at.
Di-muon measurements in CBM experiment at FAIR Arun Prakash 1 Partha Pratim Bhadhuri 2 Subhasis Chattopadhyay 2 Bhartendu Kumar Singh 1 (On behalf of CBM.
Systematic measurement of light vector mesons at RHIC-PHNEIX Yoshihide Nakamiya Hiroshima University, Japan (for the PHENIX Collaboration) Quark Matter.
Hadron Collider Physics 2012, 12/Nov/2012, KyotoShinIchi Esumi, Univ. of Tsukuba1 Heavy Ion results from RHIC-BNL ShinIchi Esumi Univ. of Tsukuba Contents.
WWND 2011 Michael Weber for the HADES collaboration Inclusive e + e - pair production in p+p and p+Nb collisions at E = 3.5 GeV Introduction.
ECAL PID1 Particle identification in ECAL Yuri Kharlov, Alexander Artamonov IHEP, Protvino CBM collaboration meeting
Prospects in ALICE for  mesons Daniel Tapia Takaki (Birmingham, UK) for the ALICE Collaboration International Conference on STRANGENESS IN QUARK MATTER.
M. Muniruzzaman University of California Riverside For PHENIX Collaboration Reconstruction of  Mesons in K + K - Channel for Au-Au Collisions at  s NN.
Charged Particle Multiplicity and Transverse Energy in √s nn = 130 GeV Au+Au Collisions Klaus Reygers University of Münster, Germany for the PHENIX Collaboration.
Feasibility of J/ψ studies by MPD detector Alla Maevskaya, Alexei Kurepin INR RAS Moscow NICA Roundtable Workshop 11 September 2009.
J/psi trigger status Alla Maevskaya INR RAS 11 March 2009 CBM Collaboration meeting.
First measurements in Pb—Pb collisions at  s NN =2.76 TeV with ALICE at the LHC M. Nicassio (University and INFN Bari) for the ALICE Collaboration Rencontres.
Robert Pak (BNL) 2012 RHIC & AGS Annual Users' Meeting 0 Energy Ro Robert Pak for PHENIX Collaboration.
20/12/2011Christina Anna Dritsa1 Design of the Micro Vertex Detector of the CBM experiment: Development of a detector response model and feasibility studies.
The ALICE Experiment Event by Event fluctuations ALICE TOF Calibration 30th November 2007Chiara Zampolli1.
Study dileptons (e + e - ) and direct photons fn MPD/NICA NICA Roundetable Workshop IV: Physics at NICA9-12 October In-medium properties of hadrons:
Nu XuDirector’s Review, LBNL, May 17, 20061/23 Future Program for Studying Bulk Properties in High-Energy Nuclear Collisions Nu Xu.
News from ALICE Jan PLUTA Heavy Ion Reaction Group (HIRG) Warsaw University of Technology February 22, XIII GDRE Workshop, SUBATECH, Nantes.
Outline Motivation The STAR/EMC detector Analysis procedure Results Final remarks.
24 Nov 2006 Kentaro MIKI University of Tsukuba “electron / photon flow” Elliptic flow measurement of direct photon in √s NN =200GeV Au+Au collisions at.
1 - Onset of deconfinement NA60+ - Existence (or non existence) of QCD critical point - Chiral symmetry restoration  Measuring dimuons at different energies.
Mass states of light vector mesons are considered to be sensitive probes of partial chiral symmetry restoration theoretically expected in high energy and/or.
J/ψ simulations: background studies and first results using a compact RICH detector Alla Maevskaya INR RAS Moscow CBM Collaboration meeting September 2007.
PHOBOS at RHIC 2000 XIV Symposium of Nuclear Physics Taxco, Mexico January 2001 Edmundo Garcia, University of Maryland.
Dilepton measurements in heavy ion collisions: fixed-target versus collider experiments 1. Experimental setups 2. Multiplicities 3. Luminosities 4. Rates.
Systematic measurement of light vector mesons at RHIC-PHNEIX Yoshihide Nakamiya Hiroshima University, Japan (for the PHENIX Collaboration) Quark Matter.
Jet Production in Au+Au Collisions at STAR Alexander Schmah for the STAR Collaboration Lawrence Berkeley National Lab Hard Probes 2015 in Montreal/Canada.
V. Pozdnyakov Direct photon and photon-jet measurement capability of the ATLAS experiment at the LHC Valery Pozdnyakov (JINR, Dubna) on behalf of the HI.
HADRON 2009, FloridaAnar Rustamov, GSI Darmstadt, Germany 1 Inclusive meson production at 3.5 GeV pp collisions with the HADES spectrometer Anar Rustamov.
Fall DNP Meeting,  meson production in Au-Au and d-Au collision at \ /s NN = 200 GeV Dipali Pal Vanderbilt University (for the PHENIX collaboration)
1 M. Gazdzicki, Frankfurt, Kielce for the NA61 Collaboration Onset of Deconfinement and Critical Point: Nucleus-Nucleus Program of NA61/SHINE Fundamentals.
Multi-Strange Hyperons Triggering at SIS 100
Review of ALICE Experiments
A heavy-ion experiment at the future facility at GSI
of secondary light ion beams
Soft Physics at Forward Rapidity
I. Vassiliev, V. Akishina, I.Kisel and
Heavy Ion Physics at NICA Simulations G. Musulmanbekov, V
Perspectives on strangeness physics with the CBM experiment at FAIR
Presentation transcript:

А.Б.Курепин – ИЯИ РАН Исследования по релятивистской ядерной физике ИТЭФ,

1. Возникновение релятивистской ядерной физики. 3. Этапы развития работ по релятивистской ядерной физике 4. Современные эксперименты по исследованию ядро-ядерных столкновений при высоких энергиях. 5. Перспективы дальнейших исследований.

На созданной сотрудниками Института ядерных исследований РАН многоцелевой установке КАСПИЙ на пучке синхрофазотрона ОИЯИ в конце 80-х – начале 90-х годов выполнены пионерские исследования рождения положительных и отрицательных пионов и каонов и впервые в мире измерения рождения антипротонов при столкновении релятивистских ядер углерода с ядерными мишенями. Обнаружено усиление выхода странных частиц и большое, почти на два порядка, превышение отношения выхода антипротонов к пионам по сравнению с протон ядерным взаимодействием. Для объяснения этого эффекта разработана модель ядерного скейлинга.

Экспериментальная установка J/  детектируются по их распаду на мюонные пары Dimuon spectrometer: Centrality detectors : EM calorimeter ( )  cos  CS  0.5 Multiplicity detector (1.9<  lab <4.2) Pb-Pb 158 GeV/c p – A 400 GeV/c 2000 year Data period Subtargets Number of J/  Target Number of J/  Be Al Cu in vacuum Ag W Pb 69000

NA50 Величина  abs зависит от энергии; Подавление (~20-30%); NA60 Сравнение подавления J/  на SPS NA60 Подавление (~40%); ψ’ подавление измерено  abs J/  (158 GeV) = 7.6 ± 0.7 ± 0.6 mb  abs J/  (400 GeV) = 4.3 ± 0.8 ± 0.6 mb

Teff в зависимости от плотности энергии При энергиях SPS для всех систем T J/  линейно растет с ростом плотности энергии. Для наиболее центральных Pb-Pb столкновений видна более пологая зависимость. T(  =0) =( 182)  2 МэВ Tslope = (  1.04)  фм 3 Tslope(cent Pb-Pb)=(8.87  2.07) фм 3 R(slopes)=2.27 +/ T(  =0) =( 182)  2 MeV Tslope = (  1.04)  фм 3 Tslope(cent Pb-Pb)=(4.42 .06) фм 3 R(slopes)=4.56 +/- 5.22

HADES - High Acceptance DiElectron Spectrometer Beams: p (LH 2 ), C, Ar -production runs  - with I=0.8*10 6 /spill and 4*10 10 N 2 /spil (<5 than needed for physics run of S262) Beam detectors : Diamond detectors (START& VETO) for HI Scintillating fibers for p,d,  beams Forward Hodoscope (0-8 0 ) - INR RICH Full azimuth coverage, Detector figure of merit N 0 =79 Carbon mirrors (2 need to be installed)-0.5%X 0 Image Processing Tracking system 3 MDC layers complete, 4 MDCIV remaining 2 ready at end Internal resolution  100  m  anticipated mass mass resolution:  M e+e /M  1.5% at  /  region - META TOF, TOFINO -INR, Pre-Shower –full coverage Image Processing Low granularity TOFINO->RPC upgrade Side View START 1 m p, , A

Physics programme(II): AA collisions in medium vector meson properties- spectral functions A V (M e+e-,p) – double differential distributions, centrality dependence Dielectron excess observed by DLS in 1AGeV. Mass dependence m T scaling for gives only  0.7  e+e-  (A p* A T ) DLS Additional self-energy terms due to meson- baryon coupling    p - beams SIS 18 SIS 200 T [MeV] 300 LHC RHIC SPS Partial restoration of chiral symmetry (vs. T,ρ) W. Weise et al. –What are the relevant observables as nuclear density and/or temperature increase? –quark picture vs. hadronic picture?

The ALICE experiment CMS ATLAS A-side C-side

Sum gives event time, difference gives event position t C – t A ~ 2 z/c A-sideC-side BEAM 1 BEAM 2 Z time 374 cm 70 cm March 3, 2016 Beam-gas B1 Beam-gas B2 ALICE T0 satellite charge measurements in the November Pb-Pb

Detector Performance in Pb-Pb PID TOF- > TOFdet +T0det T0 det resolution ~35 ps !

Detector Performance in Pb-Pb PID TOF- > TOFdet +T0det T0 det resolution ~35 ps !

ALICE results with PbPb Final Results  N ch multiplicity  Rapidty density PRL: Vol. 105 (2010)  Centrality dependence PRL: Vol. 106 (2011)  FLOW of charged particled PRL: Vol. 105 (2010)  together with ATLAS di-jet paper, got PRL “Viewpoint”, first for LHC  Suppression of high-p T (R AA ) PLB: Vol. 696 (2011) 30  Bose-Einstein correlations PLB: Vol. 696 (2011) 328 Ongoing analyses (a few out of very many => aiming to submit about 40 papers to QM Conference in May)  J/  e + e -  Event structure from autocorrelations  Azimuthal Correlations of high-p T particles  Identified particles: strangeness, resonances …   0 spectra  Heavy flavour: charm (D 0,D +, D*), heavy quarks (c,b)  e - Advanced Drafts  Identified particles: Baryon/meson ratio  Flow with identified particles:

Detector Performance in Pb-Pb PID TOF- > TOFdet +T0det T0 det resolution ~35 ps !

Energy spectra of the neutron calorimeter in proton and Pb runs ADC spectrum for 30 GeV protons 1n1n 2n2n 3n3n

New data: forward neutron emission measurements for 30 A GeV Pb CERN SPS pure EM part ~ Z 2 target  /Z 2 target ~ const Phys.Rev. C71(2005)024905

Latest data: forward neutron emission measurements for 158 A GeV In CERN SPS 1n1n 2n2n 3n3n 4n4n

CASTOR DESIGN

Физическая программа установки CASTOR 1.Поиск событий типа «Кентавр» – аномальное увеличение выхода адронов по сравнению с электромагнитной компонентой – большие поперечные импульсы по сравнению с « «нормальными» событиями - обнаружение проникающей компоненты с аномальным пробегом 2.Исследование явления выстроенности 3.Получение данных для проверки и калибровки Монте-Карло программ, используемых для интерпретации КЛ сверхвысоких энергий ( также LHCf и ACORDE-ALICE ) 4.Физика при больших быстротах: – КХД при малых х до 10**-6 10**-7 – Дифракционные процессы – Поиск КГП

NA61/SHINE experiment GDR 2010, 30th April, Paris NA61/SHINE physics program: Critical Point and Onset of Deconfinement, Neutrino physics, Cosmic-ray physics 23

Detector Particle identification: Combined energy loss and Time of Flight measurements 24 Large acceptance: ≈50% High momentum resolution <1% High detector efficiency: > 95% Event rate: 70 events/sec TOF ~60 ps

Study the onset of deconfinement Onset of Deconfinement: early stage hits transition line, observed signals: kink, horn, step T µBµB energy Kink Horn Step collision energy hadron production properties AGS SPS RHIC

Status and plans for ion collisions at SPS energies /10/ / /11/12

NA61 - Measurement of centrality: b~ A - N spect (selection of centrality at trigger level) - Measurement of event-by-event fluctuations (to exclude the fluctuation of participants) - Reconstruction of the reaction plane Main features of the PSD -high granularity: transverse homogeneity of energy resolution, reaction plane measurements ? -compensated calorimeter (e/h = 1), lead/scintillator sampling ratio 4:1 high energy resolution ~55%/sqrt(E) - longitudinal segmentation (10 sections per module) PID, background rejection, improvement of energy resolution light readout from each sections by novel MAPDs to provide large dynamic range, to exclude nuclear counting effect Role of the PSD in NA61 48 modules: 16 central (small), 28 outer (large) modules. 120 cm

SIS 100 Tm SIS 300 Tm U: 35 AGeV p: 90 GeV Structure of Nuclei far from Stability Cooled antiproton beam: Hadron Spectroscopy Compressed Baryonic Matter The future Facility for Antiproton an Ion Research (FAIR) Ion and Laser Induced Plasmas: High Energy Density in Matter

“MUON” set-up “electron” set-up

Feasibility of J/psi studies in dielectrons decay mode by CBM detector : invariant mass spectra J/psi + combinatorial background for SIS300 and SIS100 “electron” set-up: STS + RICH + TRD +ECAL STS + ECAL in “muon” set-up

Feasibility studies Event generators: URQMD, PLUTO Transport: GEANT3,4 via VMC  Radiation hard Silicon pixel/strip detectors in a magnetic dipole field  Electron detectors: RICH & TRD & ECAL: pion suppression up to 10 5  Hadron identification: RPC, RICH  Measurement of photons, π 0, η, and muons: electromagn. calorimeter (ECAL)

Invariant mass spectra J/ψ + combinatorial background for different pions, kaons and protons suppression factor Suppression S/B in 3σ Beam energy 7AGeV 9AGeV protons π & k 1000 protons π & k protons π & k J/ψ efficiency 55% 55% Alla Maevskaya INR RAS NICA Roundtable Workshop 11 September 2009 Superevent technique was used for invariant mass of background, so 196 J/ψ were added to corresponding (6400x6400) events √s =9AGeV

Заключение 1. Для решения проблемы фазового перехода ядер в кварк-глюонную материю необходимы новые экспериментальные данные в широком интервале энергий и для различных сталкивающихся ядер. 2. Необходимо детальное исследование механизма взаимодействия ядер на различных стадиях процесса.

Курепин А.Б

Courtesy of T. Hatsuda Major research programs in nuclear/quark matter physics:  Measuring the properties of the QGP (LHC, RHIC)  Searching for structures in the QCD phase diagram (SPS, RHIC, FAIR) The phase diagram of strongly interacting matter

QCD equation of state 20% Can we put a “data” point on this diagram? New generation of calculations with realistic quark masses and for N t =6. New result (Katz): T c = 191  8 MeV

Direct photons in PHENIX Phys. Rev. Lett. 94, (2005) No significant excess at low p T Expect some improvement in run4 systematic errors.

Mapping the QCD phase diagram with heavy-ion collisions net baryon density:  B  4 ( mT/2  h 2 c 2 ) 3/2 x [exp((  B -m)/T) - exp((-  B -m)/T)] baryons - antibaryons Lattice QCD calculations: Fedor & Katz, Ejiri et al. SIS300

Электромагнитные взаимодействия в столкновениях релятивистских ядер ● Ультрапериферические взаимодействия: нет перекрытия ядерных плотностей ● Воздействие Лорентц- сжатых кулоновских полей может быть представлено как поглощение эквивалентных фотонов (Weizacker-Williams method) ● Фотоядерные реакции: электромагнитная диссоциация и рождение адронов ● Реакции фотон-фотон: рождение экзотических частиц Z Дальнодействующие электромагнитные силы