Vittorio Palmieri 1 Cryogenic Operation of Si Detectors: the Lazarus Effect Vittorio Palmieri Laboratorium fuer Hochenergiephysik, Universitaet Bern, Sidlerstrasse.

Slides:



Advertisements
Similar presentations
Semiconductor detectors
Advertisements

Radiation damage in silicon sensors
Micron detector testing in Liverpool G. Casse – O. Lodge Laboratory, University of Liverpool.
Sci-Fi tracker for IT replacement 1 Lausanne 9. December 2010.
TCT study of silicon epitaxial and MCZ detectors V. Eremin 1, M. Boscardin 2, M. Bruzzi 3, D. Creanza 4, A. Macchiolo 5, D. Menichelli 3, C. Piemonte 2,
Università degli Studi di Perugia Università degli Studi di Perugia IMM Bologna 1 Measurements and Simulations of Charge Collection Efficiency of p+/n.
Trapping in silicon detectors G. Kramberger Jožef Stefan Institute, Ljubljana Slovenia G. Kramberger, Trapping in silicon detectors, Aug , 2006,
Solid State Detectors- 4 T. Bowcock 2 Schedule 1Position Sensors 2Principles of Operation of Solid State Detectors 3Techniques for High Performance Operation.
Vertex 2001 Brunnen, Switzerland Phil Allport Gianluigi Casse Ashley Greenall Salva Marti i Garcia Charge Collection Efficiency Studies with Irradiated.
Department of Physics VERTEX 2002 – Hawaii, 3-7 Nov Outline: Introduction ISE simulation of non-irradiated and irradiated devices Non-homogeneous.
Irradiation Goals Confirm that the breakdown performance improves with dose-Done Check that breakdown does not appear after inversion on n-type sensors-Done.
DISTRIBUTED CRYOGENIC COOLING WITH MINIATURIZED FLUID CIRCUITS Steffen Grohmann, ETT/TT RD39 Collaboration ST Workshop 2003 CERN, April 01-03, 2003.
Embedded Pitch Adapters a high-yield interconnection solution for strip sensors M. Ullán, C. Fleta, X. Fernández-Tejero, V. Benítez CNM (Barcelona)
Wide Bandgap Semiconductor Detectors for Harsh Radiation Environments
Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics.
Charge collection studies on heavily diodes from RD50 multiplication run G. Kramberger, V. Cindro, I. Mandić, M. Mikuž Ϯ, M. Milovanović, M. Zavrtanik.
Radiation hardness of Si-sensors N.Zamjatin, JINR, Dubna The 3rd Work Meeting of the CBM-MPD STS Consortium “Technical challenges of the CBM and MPD Silicon.
Charge collection studies on heavily diodes from RD50 multiplication run (update) G. Kramberger, V. Cindro, I. Mandić, M. Mikuž Ϯ, M. Milovanović, M. Zavrtanik.
11 th RD50 Workshop, CERN Nov Results with thin and standard p-type detectors after heavy neutron irradiation G. Casse.
Semi-conductor Detectors HEP and Accelerators Geoffrey Taylor ARC Centre for Particle Physics at the Terascale (CoEPP) The University of Melbourne.
ALBA Synchrotron – 17 June 2010 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona First Measurements on 3D Strips Detectors.
M. Bruzzi et al. Thermal donors in MCz Si, Trento Meeting Rd50 February 28, 2005 Mara Bruzzi, D. Menichelli, M. Scaringella INFN Florence, University of.
Edge-TCT and Alibava measurements with pion and neutron irradiated micro-strip detectors V. Cindro 1, G. Kramberger 1, I. Mandić 1, M. Mikuž 1,2, M. Milovanović.
Cinzia Da Via' - Brunel University UK ADVANCES IN SEMICONDUCTOR DETECTORS FOR PARTICLE TRACKING IN EXTREME RADIATION ENVIRONMENTS. Cinzia Da Via’,
Z. Li Brookhaven National Laboratory, Upton, NY , USA E. Verbitskaya, V. Eremin, A. Ivanov Ioffe Physico-Technical Institute of Russian Academy.
Approach of JSI to field modeling Gregor Kramberger (more details 19 th RD50 CERN, Vertex 2012 proceedings)
Jim Brau, Amsterdam, April 2, Nikolai Sinev and Jim Brau University of Oregon April 2, 2003 Radiation Damage Studies of Vertex Detector CCDs First.
J.Harkonen and Z.Li, LHCC open session, CERN, 24th November CERN RD39 Collaboration: Cryogenic Tracking Detectors RD39 Status Report 2004 Jaakko.
SILICON DETECTORS PART I Characteristics on semiconductors.
Summary of CMS 3D pixel sensors R&D Enver Alagoz 1 On behalf of CMS 3D collaboration 1 Physics Department, Purdue University, West Lafayette, IN
D. Menichelli, RD50, Hamburg, august TSC, DLTS and transient analysis in MCz silicon Detectors at different process temperature, irradiation.
1 Charge collection in Si detectors irradiated in situ at superfluid helium temperature E. Verbitskaya, V. Eremin Ioffe Physical-Technical Institute, St.
Charge Collection Study of Heavily Irradiated Silicon Microstrip Detectors Chris Lucas (University of Bristol) Irena Dolenc Kittelmann, Michael Moll, Nicola.
Trento, Feb.28, 2005 Workshop on p-type detectors 1 Comprehensive Radiation Damage Modeling of Silicon Detectors Petasecca M. 1,3, Moscatelli F. 1,2,3,
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
Planar Edgeless Silicon Detectors for the TOTEM Experiment 1.E-09 1.E-06 1.E /T, 1e3/K Current, A (294K) (256K)(227K)(204K) Gennaro Ruggiero,
Effects of long term annealing in p-type strip detectors irradiated with neutrons to Φ eq =1·10 16 cm -2, investigated by Edge-TCT V. Cindro 1, G. Kramberger.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
INTERSTITIAL DEFECT REACTIONS IN P-TYPE SILICON IRRADIATED AT DIFFERENT TEMPERATURES L.F. Makarenko*, S.B. Lastovski**, L.I. Murin**, M. Moll*** * Belarusian.
1/14 Characterization of P-type Silicon Detectors Irradiated with Neutrons M.Miñano 1, J.P.Balbuena 2, C. García 1, S.González 1, C.Lacasta 1, V.Lacuesta.
- Performance Studies & Production of the LHCb Silicon Tracker Stefan Koestner (University Zurich) on behalf of the Silicon Tracker Collaboration IT -
Annealing of CCE in HPK strip detectors irradiated with pions and neutrons Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko.
Production Readiness Review of L0/L1 sensors for DØ Run IIb R. Demina, August, 2003 Irradiation studies of L1 sensors for DØ 2b Regina Demina University.
CBM Collaboration Meeting. GSI, Darmstadt CBM Silicon Tracking System. CBM-01 sensors characterization. V.M. Pugatch Kiev Institute for Nuclear.
VELO Decisions Thomas Ruf LHCb week February 2001 Interference with LHC machine   LEMIC, January 2001: Presentation of the VELO Vacuum Chamber design.
Charge Collection, Power, and Annealing Behaviour of Planar Silicon Detectors after Reactor Neutron, Pion and Proton Doses up to 1.6×10 16 n eq cm -2 A.
Charge Multiplication Properties in Highly Irradiated Thin Epitaxial Silicon Diodes Jörn Lange, Julian Becker, Eckhart Fretwurst, Robert Klanner, Gunnar.
Irradiated 3D sensor testbeam results Alex Krzywda On behalf of CMS 3D collaboration Purdue University March 15, 2012.
A New Inner-Layer Silicon Micro- Strip Detector for D0 Alice Bean for the D0 Collaboration University of Kansas CIPANP Puerto Rico.
Trench detectors for enhanced charge multiplication G. Casse, D. Forshaw, M. Lozano, G. Pellegrini G. Casse, 7th Trento Meeting - 29/02 Ljubljana1.
Investigation of electric field and evidence of charge multiplication by Edge-TCT G.Kramberger, V. Cindro, I. Mandić, M. Mikuž, M. Milovanović, M. Zavrtanik.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
QA Tests Tests for each sensor Tests for each strip Tests for structures Process stability tests Irradiation tests Bonding & Module assembly Si detectors1272.
TCT measurements with strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko Mikuž 1,2, Marko.
Radiation Hardness of DEPFET Pixel Sensors Andreas Ritter IMPRS - Young Scientist Workshop 2010, Ringberg 1.
0 Characterization studies of the detector modules for the CBM Silicon Tracking System J.Heuser 1, V.Kyva 2, H.Malygina 2,3, I.Panasenko 2 V.Pugatch 2,
Zheng Li, 96th LHCC open session, 19th November 2008, CERN RD39 Status Report 2008 Zheng Li and Jaakko Härkönen Full author list available at
Panja Luukka. Silicon Beam Telescope (SiBT) Group Since 2007 a collaboration of several CMS institutes has been operating a silicon micro-strip beam telescope.
Investigation of the effects of thickness, pitch and manufacturer on charge multiplication properties of highly irradiated n-in-p FZ silicon strips A.
Position Sensitive TCT Measurements with 3D-stc detectors
M. C. Veale1, S. J. Bell1,2, D. D. Duarte1,2, M. J. French1, M
Results from the first diode irradiation and status of bonding tests
Planar Edgeless Silicon Detectors for the TOTEM Experiment
Vertex Detector Overview Prototypes R&D Plans Summary.
Testbeam Results for GaAs and Radiation-hard Si Sensors
Vladimir Cindro, RD50 Workshop, Prague, June 26-28, 2006
CCE measurements with Epi-Si detectors
Peter Kodyš, Zdeněk Doležal, Jan Brož,
Igor Mandić1, Vladimir Cindro1, Gregor Kramberger1 and Marko Mikuž1,2
Presentation transcript:

Vittorio Palmieri 1 Cryogenic Operation of Si Detectors: the Lazarus Effect Vittorio Palmieri Laboratorium fuer Hochenergiephysik, Universitaet Bern, Sidlerstrasse 5, 3012 Bern, Switzerland on behalf of the CERN-RD39 Collaboration

Vittorio Palmieri 2 Outline Properties of Si at cryogenic temperatures CCE of heavily irradiated Si detectors at cryogenic temperatures: n/cm n/cm 2 Neutralization of induced defects: the Lazarus effect Low cost “ohmic” devices Segmented devices: irradiated DELPHI module ( n/cm 2 ) Low mass cooling Conclusions Future trends

Vittorio Palmieri 3 Properties of Silicon at Cryogenic Temperatures C. Canali et al., Phys. Rev. B 12 (1975) 2265 G. Ottaviani et al, Phys. Rev. B 12 (1975) 3318

Vittorio Palmieri 4 Radiation Hardness of Silicon at 300 K E. Borchi et al., Nucl. Phys. B (Proc. Suppl.) 61B (1998) 481 The ROSE Collaboration (RD48) Status Report, CERN/LHCC

Vittorio Palmieri n/cm 2 Irradiated Si Detectors Operated at 4.2 K, 77 K and 195 K Irradiated at room temperature at TAPIRO, ENEA Italy Stored at room temperature and bonded, therefore fully reverse annealed (RA) Material and process: –Al/n+/n/p+/Al1.8 k  cm

Vittorio Palmieri 6 I-V Characteristic n/cm 2 RA

Vittorio Palmieri 7 M.I.P.s Signal Charge and Timing C. Da Via’ et al., Proc. of the International Conference on GaAs, Nucl. Instr. and Meth. in Phys. Res. A (1998) in press 77 K 50 V

Vittorio Palmieri 8 Charge Collection Efficiency C. Da Via’ et al., Proc. of the International Conference on GaAs, Nucl. Instr. and Meth. in Phys. Res. A (1998) in press n/cm 2 RA

Vittorio Palmieri n/cm 2 Irradiated Si Detectors Operated at 4.2 K, 77 K and 195 K Irradiated at room temperature at TRIGA, JSI Slovenia Stored at room temperature and bonded therefore fully reverse annealed (RA) Different materials and processes: –Al/n+/n/p+/Al 1.8 k  -cm O 2 –Al/n+/n/p+/Al 2.7 k  -cm

Vittorio Palmieri 10 I-V Characteristic n/cm 2 RA

Vittorio Palmieri 11 M.I.P.s Signal Charge and Timing V.G. Palmieri et al., Nucl. Instr. and Meth. in Phys. Res. A 413 (1998) K 250 V

Vittorio Palmieri 12 Charge Collection Efficiency n/cm 2 RA V.G. Palmieri et al., Nucl. Instr. and Meth. in Phys. Res. A 413 (1998) 475

Vittorio Palmieri 13 The Lazarus Effect St. John at al., The Bible, New Testament, ~100

Vittorio Palmieri 14 Radiation Induced Defects in Silicon EcEc EvEv EfEf Electron Traps (Vacancies Related) V 6 very shallow C I C S (B) E c eV0.38/cm VO E c eV0.63 C I C S (A) E c eV0.38 V2(=/-)+Vn E c -0.22eV0.96 V2(-/0)+Vn E c -0.40eV0.96 (Disappears after annealing) Holes Traps (Interstitial Related) C I E v +0.28eV1.5 (disappears after annealing) C I O I E V +0.36eV1.2 (depends on [C s ] and[O I ]) The ROSE Collaboration (RD48) Status Report, CERN/LHCC

Vittorio Palmieri 15 The Lazarus Effect

Vittorio Palmieri 16 The CERN RD39 Collaboration

Vittorio Palmieri 17 Temperature Dependence Gennaro Ruggiero PRELIMINARY

Vittorio Palmieri 18 Voltage Dependence Gennaro Ruggiero PRELIMINARY

Vittorio Palmieri n/cm 2 Irradiated Si “Ohmic Device” Irradiated at room temperature at TRIGA, JSI Slovenia Stored at room temperature and bonded 80C = 2weeks at 300C) therefore fully RA Material and process: –Al/n+/n/n+/Al5 k  cm ++ + Before irradiation -+ + After irradiation

Vittorio Palmieri 20 I-V Characteristic Gennaro Ruggiero n/cm 2 RA

Vittorio Palmieri 21 M.I.P.s Signal Charge and Timing Gennaro Ruggiero 77 K 250 V

Vittorio Palmieri 22 Charge Collection Efficiency n/cm 2 RA Gennaro Ruggiero PRELIMINARY

Vittorio Palmieri 23 Liquid Nitrogen Cooling Non-flammable Non-toxic Easy to handle High cooling power Environmentally friendly Available everywhere

Vittorio Palmieri 24 RD39/COMPASS August Test Beam muon-beam COMPASS  -strips telescope RD39 cryostat DELPHI strips

Vittorio Palmieri 25 DELPHI Module Detectors: Hamamatzu 320  m 5.75 x 3.2 cm Kohm cm p-side640 strips strip pitch 25  m r-o pitch 50  m n-side640 strips (p-stops) strip pitch 42  m r-o pitch 42  m Electronics:10 x MX6 128 input channels CMOS technology 2.5 MHz speed 1.5  s peaking time s/n degrades by 8.5% for every 100Gy of noise hybrid p-side n-side p-side mx6 V. Chabaud et al., CERN-PPE/95-86, 1995

Vittorio Palmieri 26 Irradiated (Dead) Detector Peter Chochula and Paula Collins p/cm 2 NRA  Laser Scan

Vittorio Palmieri 27 Operation in the Cold hybrid p-side n-side mx6 Det 1 non-irr Det p/cm 2 hybrid p-side n-side p-side mx6 beam 77K T hybrid D1 T hybrid D2 T bath Time (s) 2nd module on ! William Hamish Bell and Luca Casagrande Temperature (K)

Vittorio Palmieri 28 Back from the Dead Luca Casagrande and Paula Collins PRELIMINARY

Vittorio Palmieri 29 Temperature and Voltage Dependence T V 30V 110K 90V 125K 110K90V PRELIMINARY Luca Casagrande and Paula Collins

Vittorio Palmieri 30 Liquid Nitrogen Low Mass Cooling Cooling must be taken as an integral part of engineering (not an add-on) Power must be absorbed where it is produced –detector: < 1 µW/cm 2 –read-out: ~ 3 mW/strip Support structures: conduction is negligible if cooling is integrated Vacuum isolation is needed for a reliable low-mass system

Vittorio Palmieri 31 RD39 Module Tapio Niinikoski

Vittorio Palmieri 32 Conclusions Cryogenic cooling dramatically improves radiation hardness of silicon detectors After n/cm 2 irradiation 100% CCE is achieved with only 50 V detector bias After n/cm 2 irradiation a m.i.p., most probable signal of e, is measured at 200 V detector bias. This corresponds to 50% CCE No difference is found between room temperature and 195 K operation Detectors storage at room temperature slightly affect the results (many months) Cooling needed only during operation Similar results apply to segmented devices

Vittorio Palmieri 33 Future Trends Low mass cooling system for a full tracker (2  geometry) under construction Ohmic detectors could result in a much cheaper and more reliable solution Need for evaluation of performances of irradiated and non-irradiated FET electronics at cryogenic temperatures