Charmonia in Heavy Ion Collisions should we go back to SPS ? – charmonia in A+A : the current (simplified) picture – – back to SPS : the CHIC picture–

Slides:



Advertisements
Similar presentations
Initial and final state effects in charmonium production at RHIC and LHC. A.B.Kaidalov ITEP, Moscow Based on papers with L.Bravina, K.Tywoniuk, E.Zabrodin.
Advertisements

Fate of the Weakly-Bound ψ (2s) in Nuclear Matter J. Matthew Durham
Upsilon: the new golden probe? Elena G. Ferreiro Universidade de Santiago de Compostela, Spain Workshop Trento, February 2013 E. G. Ferreiro.
Maki Kurosawa for the PHENIX Collaboration RIKEN Nishina Center 5/11/2015RHIC/AGS User's Meeting Maki Kurosawa 1 Recent Open Heavy Flavor Results from.
Quarkonia and vector mesons in d+Au collision at forward rapidity in PHENIX Kwangbok Lee Korea University for PHENIX collaboration 1 11 Dec. HIM 2010,
Heavy flavor production in sqrt(s NN )=200 GeV d+Au Collisions at PHENIX DNP 2013 Matthew Wysocki, Oak Ridge National Lab Newport News, Virginia, Oct 25,
Upsilon Production in Heavy Ions with STAR and CMS
Bielefeld, sept 05F. Fleuret - LLR 1 Heavy ions at RHIC The J/  adventure J/  simultaneously discovered in november 1974 Ting et al. at the Brookhaven.
Quarkonia Production in p+p, d+Au and A+A from PHENIX Melynda Brooks Los Alamos National Laboratory For the PHENIX Collaboration Melynda Brooks, LANL,
ICPAQGP, Kolkata, February 2-6, 2015 Itzhak Tserruya PHENIX highlights.
SPS (Charm in Heavy Ion Collisions) Detector design A 3 rd generation experiment to study charm with proton and ion beams on fixed target at SPS.
Charmonia production at the SPS energies Marie-Pierre COMETS IPN Orsay, FRANCE SQM2006, UCLA, Los Angeles, USA, March 26-31, 2006.
J/  production in Cu+Cu and Au+Au collisions at √s = 200 GeV measured by PHENIX at RHIC Andry Rakotozafindrabe LLR – École Polytechnique (France) PHENIX.
Cold Nuclear Matter E ff ects on J/ ψ as Constrained by d+Au Measurements at √s NN = 200 GeV in the PHENIX Experiment Matthew Wysocki University of Colorado.
Upsilon production in STAR Pibero Djawotho Indiana University Cyclotron Facility October 12, 2007 DNP 2007.
J/  and  ’ Production in p+p, d+Au and A+A from PHENIX Melynda Brooks Los Alamos National Laboratory For the PHENIX Collaboration Melynda Brooks, LANL,
Sourav Tarafdar Banaras Hindu University For the PHENIX Collaboration Hard Probes 2012 Measurement of electrons from Heavy Quarks at PHENIX.
Recent measurements of open heavy flavor production by PHENIX Irakli Garishvili, Lawrence Livermore National Laboratory PHENIX collaboration  Heavy quarks.
J/  production in In-In collisions at SPS energies Philippe Pillot — IPN Lyon for the NA60 Collaboration work 2005 June 16–20   Outline: Reminder.
Open charm and charmonium production in p-A collisions at the CERN SPS E. Scomparin (INFN – Torino, Italy), NA60 collaboration Introduction Charmonium.
CHIC, Charme et QGP –quarkonia suppression in A+A – –J/  experimental highlights – – CHIC physics motivations– –CHIC experimental aspects– Frédéric Fleuret.
J/  measurement in d-Au interactions at s NN = 200 GeV David Silvermyr, LANL Physics Motivation - J/  production, gluon shadowing. Run-3 d-Au (2003)
A SCENIC OVERVIEW OF J/  PRODUCTION IN HEAVY ION COLLISIONS AT PHENIX Matthew Wysocki, University of Colorado For the PHENIX Collaboration.
Measurements of  Production and Nuclear Modification Factor at STAR Anthony Kesich University of California, Davis STAR Collaboration.
Single Electron Measurements at RHIC-PHENIX T. Hachiya Hiroshima University For the PHENIX Collaboration.
А.Б.Курепин – ИЯИ РАН, Москва Столкновение релятивистских тяжелых ядер и загадка чармония VI Марковские чтения 15 Мая 2008 г. ОИЯИ, Дубна.
N. Topilskaya, A.Kurepin – INR, Moscow Transverse momentum dependence of charmonium production in heavy ion collisions. 3rd INT. WORKSHOP ON HIGH-PT PHYSICS.
J/  production in p+p and 200 GeV as seen by the PHENIX experiment at RHIC Raphaël Granier de Cassagnac LLR – Ecole polytechnique Topics in Heavy-Ions.
R CP Measurement with Hadron Decay Muons in Au+Au Collisions at √s NN =200 GeV WooJin Park Korea University For the PHENIX Collaboration.
☍ Heavy Quarkonium in Heavy Ion Collisions  ϒ production  pp, dAu, AuAu collisions  Nuclear Modification  Comparison to models  Questions from trends.
 production in p+p and Au+Au collisions in STAR Debasish Das UC Davis (For the STAR Collaboration)‏
Kwangbok Lee, LANL for the PHENIX collaboration DIS 2011, Newport News, VA Heavy vector meson results at PHENIX 1.
J/psi production in Au+Au and Cu+Cu collisions at RHIC-PHENIX Susumu Oda (Doctor course student) Hamagaki group, CNS, University of Tokyo 2007/08/28 CISS07,
☍ Studying bottmonium in hot/cold QGP medium. ☍ Triggering on ϒ production in STAR ☍ Baseline measurement: ϒ cross section in pp collisions. ☍ ϒ and CNM.
Cold Nuclear Matter effects at RHIC Latest results (run 2008) Frédéric Fleuret - LLR1/18.
INTRINSIC AND EXTRINSIC P T EFFECTS ON J/  SHADOWING This work, on behalf of E. G. Ferreiro F. Fleuret J.-P. Lansberg A. Rakotozafindrabe Work in progress…
Latest Charmonium Results from the PHENIX Experiment at RHIC Alexandre Lebedev (Iowa State University) For the PHENIX Collaboration Lake Louise Winter.
An experiment to measure  c suppression at the CERN SPS CHIC: Charm in Heavy Ion Collisions F. Fleuret 1, F. Arleo 2, E. G. Ferreiro 3, P.-B. Gossiaux.
Color screening in Quark Gluon Plasma (QGP): A new experiment to measure charm production in PbPb collisions at the CERN SPS CHIC: Charm in Heavy Ion Collisions.
1 5 th International School on QGP and Heavy Ions Collisions: past, present and future Torino, 5-12 March 2011.
Probing the properties of dense partonic matter at RHIC Y. Akiba (RIKEN) for PHENIX collaboration.
1 Fukutaro Kajihara (CNS, University of Tokyo) for the PHENIX Collaboration Heavy Quark Measurement by Single Electrons in the PHENIX Experiment.
C H I C Charm in Heavy Ion SPS 1.J/  – Suppression in A+A 2.CHIC – Physics motivations 3.CHIC – Experimental aspects 1F. Fleuret - LLR.
B. Kim, International Workshop on Heavy Quark Production in HIC 1 Byungil Kim For the PHENIX Collaboration International Workshop on Heavy Quark Production.
 Production and Suppression in Heavy Ion Collisions at STAR Anthony Kesich University of California, Davis STAR Collaboration February 5, 2013.
OPEN HEAVY FLAVORS 1. Heavy Flavor 2 Heavy quarks produced in the early stages of the collisions (high Q2)  effective probe of the high-density medium.
Quarkonia Measurement Updates from PHENIX Cesar Luiz da Silva Los Alamos National Lab for the PHENIX Collaboration.
Olena Linnyk Charmonium in heavy ion collisions 16 July 2007.
Charm measurements at SPS to RHIC Y. Akiba (KEK) March 14, 2003 Strangeness in Quark Matter 2003.
PHENIX results on J/  production in Au+Au and Cu+Cu collisions at  S NN =200 GeV Hugo Pereira Da Costa CEA Saclay, for the PHENIX collaboration Quark.
BY A PEDESTRIAN Related publications direct photon in Au+Au  PRL94, (2005) direct photon in p+p  PRL98, (2007) e+e- in p+p and Au+Au 
J/  production in Cu+Cu and Au+Au collisions at RHIC-PHENIX Susumu X. Oda for the PHENIX collaboration CNS, University of Tokyo February 9 (Sat.), 2008,
Know How at LLR Ultra-granular calorimetry AFTER vs CHIC 1F. Fleuret - LLR11/05/ LPSC.
July 27, 2002CMS Heavy Ions Bolek Wyslouch1 Heavy Ion Physics with the CMS Experiment at the Large Hadron Collider Bolek Wyslouch MIT for the CMS Collaboration.
Color screening in Quark Gluon Plasma (QGP): A new experiment to measure charm production in PbPb collisions at the CERN SPS CHIC: Charm in Heavy Ion Collisions.
Heavy Flavor Measurements at RHIC&LHC W. Xie (Purdue University, West Lafayette) W. Xie (Purdue University, West Lafayette) Open Heavy Flavor Workshop.
Review on experimental results on quarkonium production Javier Castillo CEA Saclay – Irfu/SPhN 1 1st SaporeGravis Day Meeting - IPN Orsay – 23/11/2012.
PHENIX J/  Measurements at  s = 200A GeV Wei Xie UC. RiverSide For PHENIX Collaboration.
1 Joint meeting IPNO-LAL LUA9-AFTER Orsay, Novembre 2013 Roberta Arnaldi INFN Torino (Italy)
C H I C Charm in Heavy Ion SPS 1.J/  – Suppression in A+A 2.CHIC – Physics motivations 3.CHIC – Experimental aspects 1F. Fleuret,CS - LLR.
Review of ALICE Experiments
ALICE and the Little Bang
Quarkonium production in ALICE
Motivation for Studying Heavy Quarks
An experiment to measure cc suppression at the CERN SPS
Heavy ions at RHIC The J/Y adventure
Charmed hadron signals of partonic medium
Charmonium dissociation and recombination at RHIC and LHC
Quarkonium production in p-p and A-A collisions: ALICE status report
An experiment to measure cc suppression at the CERN SPS
Presentation transcript:

Charmonia in Heavy Ion Collisions should we go back to SPS ? – charmonia in A+A : the current (simplified) picture – – back to SPS : the CHIC picture– 04/05/ RILFrédéric Fleuret - LLR1

Charmonia in A+A Reminder Motivations – Quarkonia suppression is a prediction of lattice QCD calculations, for instance : Experimental setups SPS/CERN – NA38, NA50, NA60 (  s NN = 17 – 30 GeV): fixed target experiments  Statistic : ’s J/   Data sets : p+A w/ A=p, d, Be, Al, Cu, Ag, W, Pb; S+U, In+In, Pb+Pb  Small rapidity coverage (typically y CMS  [0,1]) RHIC/BNL – Phenix experiment (  s NN = 200 GeV): collider experiments  Statistic : 1000’s J/  (10000’s since 2007)  Data sets : p+p, d+Au, Cu+Cu, Au+Au  Large rapidity coverage (y CMS  [-0.5,0.5], y CMS  [-2.2,-1.2] and y CMS  [1.2,2.2]) LHC/CERN experiments (  s NN = 5,5 TeV): collider experiments  Collider experiments  Statistic : ’s J/   Data sets : p+p, Pb+Pb, p+Pb  Large rapidity coverage (|y CMS |<2.5 ATLAS/CMS, |y CMS |<0.9 and -4.0 < y CMS < -2.5 ALICE) 04/05/ RILFrédéric Fleuret - LLR2 H. Satz, J. Phys. G 32 (2006)

Charmonia in A+A Envisionned mechanisms Sequential suppression in a QGP 04/05/ RILFrédéric Fleuret - LLR3 1 T  ’ > T c T  > T  ’ > T c T J/  > T  > T  ’ > T c ~0.9 ~0.6 ~0 Sequential suppression Temperature H. Satz, J. Phys. G 32 (2006) inclusive J/  yield ~ 60% direct J/  + 30%  c  J/  +  + 10%  ’  J/  + X Charmonium temperatures of dissociation T LHC-CERN > T RHIC-BNL > T SPS-CERN J/  production (a.u.)

Recombination in a QGP 04/05/ RILFrédéric Fleuret - LLR4 If QGP at work  c and c quarks can combine to form a J/   (require a large number of cc pairs  RHIC ? LHC ?) 1 T  ’ > T c T  > T  ’ > T c T J/  > T  > T  ’ > T c ~0.9 ~0.6 ~0 Sequential suppression Recombination J/  production (a.u.) T LHC-CERN > T RHIC-BNL > T SPS-CERN Temperature Charmonia in A+A Envisionned mechanisms

Suppression by comovers (Alternative scenario) – Suppression by comovers: quarkonia can be broken by interaction with comoving hadrons 04/05/ RILFrédéric Fleuret - LLR5 (Eur.Phys.J.C58: ,2008) 1 T  ’ > T c T  > T  ’ > T c T J/  > T  > T  ’ > T c ~0.9 ~0.6 ~0 Sequential suppression Recombination Hadron density N co Interaction cross section  co Two parameters Suppression by comovers Temperature J/  production (a.u.) Charmonia in A+A Envisionned mechanisms

Two major results : 1.Observation of Cold Nuclear Matter effects : Absorption by nuclear matter Suppression observed from p+p to peripheral Pb+Pb J/  survival probability : Fit to data:  abs =4.18  0.35 mb 1.Observation of Anomalous suppression in Pb+Pb (NA50) central collisions when compared with Cold Nuclear Matter effects. Charmonia in A+A Experimental highlights SPS (17 GeV): NA38, NA51, NA50, NA60 04/05/ RILFrédéric Fleuret - LLR6 J/J/ L J/  nuclear absorption centralperipheralmid collisions NA50, EPJ C39 (2005) 335 NA60, PRL99 (2007)

Charmonia in A+A Experimental highlights RHIC (200 GeV).vs. SPS (17 GeV) 1.Hot and dense matter effects Measure J/  in Au+Au (RHIC) Pb+Pb (SPS) Compare at same rapidity (same y ~ same x F ) – 0<y<1 at SPS (NA50/NA60) – |y|<0.35 at RHIC (PHENIX) Expected larger suppression at RHIC due to larger energy density observe SIMILAR SUPPRESSION at mid rapidity Observe LARGER SUPPRESSION at forward rapidity 2.Cold Nuclear Matter effects at RHIC Measure J/  production in d+Au collisions Observe LARGER SUPPRESSION at forward rapidity (small x 2 ) Pattern still not fully understood Difference forward.vs.mid rapidity may explain larger suppression observed in forward Au+Au 04/05/ RILFrédéric Fleuret - LLR7

Charmonia in A+A Experimental highlights RHIC (200 GeV).vs. LHC (2.76 TeV) at forward rapidity – Compare PHENIX vs ALICE 1.2 < |y| < 2.2 at RHIC/PHENIX 2.5 < y < 4 at LHC/ALICE – LESS SUPPRESSION at LHC.vs. RHIC – Could be due to recombination effects RHIC (200 GeV).vs. LHC (2.76 TeV) at mid-rapidity – Compare PHENIX, STAR vs CMS |y|<0.35 at RHIC/PHENIX |y|<1 at RHIC/STAR |y|<1 at LHC/CMS – MORE SUPPRESSION at LHC.vs. RHIC p T >6.5 GeV/c  in principle no recombination applies larger suppression due to QGP effects ? – Hint of sequential suppression ? (J/  melting) Caution : Need CNM effects comparison 04/05/ RILFrédéric Fleuret - LLR8 PHENIX CMS

Charmonia in A+A The current picture Overall possible J/  (simplified) picture 1.Similar suppression at SPS.vs.RHIC  ’ and  c suppression only ? 2.CMS: Larger suppression at LHC pT>6.5 GeV/c  « outside » recombination regime ? Hint of sequential suppression ? (assuming CNM effects are the same or smaller) 3.ALICE |y|>2.5: Smaller suppression at LHC « inside » recombination regime ? Hint of recombination ? (assuming CNM effects are the same of larger) 04/05/ RILFrédéric Fleuret - LLR SPS/RHIC LHC high p T SPS/RHIC LHC low p T Energy density J/  production probability Sequential suppression recombination 9

Charmonia in A+A Key questions Answers to these questions are mandatory : – What are CNM effects at LHC ? Shadowing should be large at forward rapidity Shadowing should be small at high p T Resonance break-up cross section should be small – Is recombination mechanism at work ? If smaller suppression observed at mid-rapidity and low p T – Is sequential suppression at work ? Need several (at least two) resonances  ’ is not a good probe because of comovers Should measure  c 04/05/ RILFrédéric Fleuret - LLR10  p+Pb run  ALICE.vs.CMS at |y|=0  unreachable

Back to SPS ? Sequential suppression ? Measuring  c in A+A: – test charmonia sequential suppression – How  c is suppressed relative to J/  ? Dependence with y, p T, centrality? Mandatory to draw the whole picture (SPS.vs. RHIC.vs. LHC) Should measure  c at SPS. Why at SPS ? – If we understand SPS, we understand RHIC (same suppression) – Anomalous suppression has been seen at SPS – Appropriate range of energy density: can investigate  ’,  c and J/  suppression – On average, 0.1 cc pair/event No recombination at SPS Fixed target experiment ? – Can operate many target species Better control of CNM effects 04/05/ RILFrédéric Fleuret - LLR11

Back to SPS ? Charmonia suppression Charmonia suppression At SPS 04/05/ RILFrédéric Fleuret - LLR12 p+A L (fm)  (GeV/fm 3 ) 60% direct J/  + 30%  c  J/  +  + 10%  ’  J/  + X Inclusive J/  yield S+U Pb+Pb Eur.Phys.J.C49: ,2007 Two possible scenarios: sequential suppression (QGP) comovers (no QGP) Temperature of dissociation Binding energy

Back to SPS ? Charmonia suppression Two possible scenarios 1.QGP (sequential suppression) 04/05/ RILFrédéric Fleuret - LLR13 p+A L (fm)  (GeV/fm 3 ) S+U Because  E (  ’) ~50 MeV  ’ easily suppressed by comovers Because  E(  c )~200 MeV and  E(J/  )~600 MeV   c  and  J  hardly suppressed by comovers Measuring  c suppression pattern will (in)validate this If  c suppressed by QGP,  c slope strongly steeper than J/  and  ’ Eur.Phys.J.C49: ,2007 ’’ cc Inclusive J/  Pb+Pb Note that direct J/  can be experimentally estimated Yield incl.J/  – Yield  c  J/  +  – Yield  ’ ~ Yield direct J/ 

Back to SPS ? Charmonia suppression Two possible scenarios 2.No QGP (full comovers) 04/05/ RILFrédéric Fleuret - LLR14 p+A L (fm)  (GeV/fm 3 ) S+U Because  J/  -co    c-co    ’-co  ’ slope slightly steeper than  c  c slope slightly steeper than J/  Measuring  c suppression pattern will (in)validate this Eur.Phys.J.C49: ,2007 ’’ direct J/  cc Note that direct J/  can be experimentally estimated Yield incl.J/  – Yield  c  J/  +  – Yield  ’ ~ Yield direct J/  Pb+Pb

Back to SPS ? Measuring  c Conclusion : 04/05/ RILFrédéric Fleuret - LLR15 p+A L (fm)  (GeV/fm 3 ) S+U measuring  ’,  J  and  c suppression pattern will answer the question QGP no QGP Eur.Phys.J.C49: ,2007 QGP  c No QGP  c Note that direct J/  can be experimentally estimated Yield incl.J/  – Yield  c  J/  +  – Yield  ’ ~ Yield direct J/  Pb+Pb

Primary goals :  c  J/  +    +  -  at y CMS = 0 J/    +  - in large y CMS range Detector features : very compact 1.Spectrometer - Measure tracks before absorber   M ~20 MeV/c² - Covers y CMS [-0.5, 2]  need high segmentation  Silicon technologies 2.Calorimeter - Measuring  in high  0 multiplicity environment  ultra-granular EMCal (Calice) 3.Absorber/trigger - Using 4.5 m thick Fe to absorb  /K and low P  +/- - Can use smaller absorber if Fe magnetized - Trigger to be defined (expected rate = 0.3 kHz) Expected performances 1.tracking : 2.Calorimetry : Frédéric Fleuret - LLR16 Dipole field Back to SPS Charm In Heavy Ion Collisions 04/05/ RIL

CHIC: Experimental setup flexibility 04/05/ RILFrédéric Fleuret - LLR17 Large rapidity coverage fixed target mode  high flexibility displace tracker to access large rapidity modify calorimeter to access large rapidity Forward rapidityMid rapidity Very compact detector (full detector simulation ongoing) Back to SPS Charm In Heavy Ion Collisions

Typical mass plots – Pb+Pb minBias EPOS events events with J/  embedded (70%) events with  c embedded (30%) 04/05/ RILFrédéric Fleuret - LLR18 S/B=1.8 After acceptance and selection cuts: J/   acc x eff = 17.4% 1700  c  acc x eff = 2.8 % cc J/  S/B=990 Charm in Heavy Ion Collisions Signal extraction

Typical one month Pb+Pb run with a 4mm thick target – ~ inclusive J/    +  - expected – 2 extreme scenarios: If  c suppressed as J/  If  c suppressed as  ’ Frédéric Fleuret - LLR19 ~ J/  ~ 1300  ’  c as J/   c as  ’ Eur.Phys.J.C49: ,2007 Uncertainties  c stat > 2 x  ’ stat   c error <  ’ error/  2 Uncertainties  c stat > 2 x  ’ stat   c error <  ’ error/  2 Charm in Heavy Ion Collisions Figure of Merit 04/05/ RIL

Conclusion – Core benchmark : unique test of  c in heavy ion collisions – What we didn’t discuss : CHIC p+A program – 9 months of proton beam available – to be compared to the usual one month – capability to access x F = 1 – physics of saturation : shadowing, CGC, energy loss (Arléo, Peigné) – charmonium hadronisation time – charmonium absorption cross section Drell-Yan studies Open charm studies Charged/neutral hadrons studies Photons studies Low mass dileptons 04/05/ RILFrédéric Fleuret - LLR20 Back to SPS Charm In Heavy Ion Collisions

Backup slides Frédéric Fleuret - LLR

Backup Physics motivations Sequential suppression in a QGP Frédéric Fleuret - LLR Above threshold H. Satz, J. Phys. G 32 (2005) threshold No QGPQGP F. Karsch, Lect. Notes Phys. 583 (2002) 209 If QGP at work  threshold effect Temperatures of dissociation :

Sequential suppression in a QGP Frédéric Fleuret - LLR Experimentally,  ’ suppression starts at L (fm)  (GeV/fm 3 ) Theoretically, expect Theoretically,  c suppression should start at L (fm)  (GeV/fm 3 ) Experimentally, J/  suppression starts at L (fm)  (GeV/fm 3 ) data p+A L (fm)  (GeV/fm 3 ) S+U Pb+Pb Eur.Phys.J.C49: ,2007 Conclusion either theoretical predictions are wrong, or  ’ is previously suppressed by something else Backup Physics motivations

Sequential suppression by comovers – Suppression by comovers: quarkonia can be broken by interaction with comoving partons/hadrons – Two parameters Hadron density N co Interaction cross section  co Frédéric Fleuret - LLR (Eur.Phys.J.C58: ,2008) A. Capella, EPJ C30, 117 (2003) Backup Physics motivations

Sequential suppression by comovers – Suppression by comovers: quarkonia can be broken by interaction with comoving partons/hadrons – Two parameters Hadron density Interaction cross section  co – There is a hierarchy in the suppression  co is linked to the quarkonium binding energy The larger the binding energy, the smaller the  co But  co is theoretically unknown (must be fitted on the data) – Sequential suppression  E(J/  ) >  E(  c ) >  E (  ’)   J/  -co    c-co    ’-co Frédéric Fleuret - LLR Quarkonium bindind energy (  E = M quarkonium – 2M D ) Backup Physics motivations

p+A L (fm)  (GeV/fm 3 ) S+U Pb+Pb Sequential suppression by comovers Frédéric Fleuret - LLR   ’ suppression pattern slightly steeper than J/  one (theoritically  J/  -co    ’-co )  If comovers at work,  c suppression pattern should stand within  ’ and J/  suppression patterns Conclusion Need to measure  c pattern to test comovers scenario Eur.Phys.J.C49: ,2007 ’’ Inclusive J/  Eur.Phys.J.C58: ,2008 If comovers at work  smooth suppression (reminder: If QGP at work  threshold effect) Experimentally, Backup Physics motivations

Benchmark 2: Measure charmonium in p+A at SPS Frédéric Fleuret - LLR Euro. Phys. J. C48 (2006) 329. J/  and  ’ suppression in p+A collisions as a function of L  Measuring different charmonium states gives key information on Cold Nuclear Matter and production mechanism. J/  rapidity distribution in p+A collisions (asymetry wrt y cm =0)  Measuring charmonium in a wide x F range is important to identify possible (anti)shadowing effects NA50 ’’ J/  Backup Physics motivations

Measure charmonium in p+A at SPS Frédéric Fleuret - LLR Possible to access large x F if measuring charmonia at rapidity up to y CMS ~2 With M=3.1 GeV/c² and  s=17.2 GeV (158 GeV) x F = 1  y CMS = 1.7 With M=3.1 GeV/c² and  s=29.1 GeV (450 GeV) x F = 1  y CMS = 2.2 Y CMS =2  x F = 0.8 E866, Phys. Rev. Lett. 84, (2000)  Measuring charmonium in a wide x F range is important to estimate possible (anti)shadowing effects Backup Physics motivations

Backup fixed target.vs.collider mode Cold Nuclear Matter studies – Must be performed in p+A collisions – The more A versatility, the better Collider mode – Difficult to operate many A systems (for instance, since 2000, Phenix operated d+Au collisions only)  studies as a function of centrality – Constraints: 1.Centrality bin limitation: due to the “small” number of particle produced in p+A, cannot make as many centrality bins as in A+A collisions 2.Glauber uncertainty :.vs.centrality through Glauber calculation  uncertainty on (~7% for Phenix) Fixed target mode – Easy to operate many A systems – No bin limitation – No Glauber uncertainties Frédéric Fleuret - LLR centrality 0-20% 15.1  % 10.2  % 6.6  % 3.2  0.2 arXiv: Phenix d+Au centrality bins Collider mode: Fixed target mode: