Cymedr ac Amrywiant Hapnewinynau Di-dor Er mwyn darganfod beth yw cymedr neu gwerth disgwyliedig hapnewidyn di-dor, rhaid i ni luosi’r ffwythiant dwysedd.

Slides:



Advertisements
Similar presentations
The Normal Distribution
Advertisements

E(X 2 ) = Var (X) = E(X 2 ) – [E(X)] 2 E(X) = The Mean and Variance of a Continuous Random Variable In order to calculate the mean or expected value of.
Estimation  Samples are collected to estimate characteristics of the population of particular interest. Parameter – numerical characteristic of the population.
Starter.
AP Statistics Chapter 16. Discrete Random Variables A discrete random variable X has a countable number of possible values. The probability distribution.
Why Do Stochastic Simulations? Empirical evaluation of statistical tests or methods –Want to know how well t-test performs when have unequal variances.
Lesson #15 The Normal Distribution. For a truly continuous random variable, P(X = c) = 0 for any value, c. Thus, we define probabilities only on intervals.
Sections 4.1, 4.2, 4.3 Important Definitions in the Text:
CONTINUOUS RANDOM VARIABLES. Continuous random variables have values in a “continuum” of real numbers Examples -- X = How far you will hit a golf ball.
Section 3.3 If the space of a random variable X consists of discrete points, then X is said to be a random variable of the discrete type. If the space.
Chris Morgan, MATH G160 February 3, 2012 Lecture 11 Chapter 5.3: Expectation (Mean) and Variance 1.
Review of Probability and Statistics
The joint probability distribution function of X and Y is denoted by f XY (x,y). The marginal probability distribution function of X, f X (x) is obtained.
1A.1 Copyright© 1977 John Wiley & Son, Inc. All rights reserved Review Some Basic Statistical Concepts Appendix 1A.
Normal and Sampling Distributions A normal distribution is uniquely determined by its mean, , and variance,  2 The random variable Z = (X-  /  is.
CIS 2033 based on Dekking et al. A Modern Introduction to Probability and Statistics, 2007 Instructor Longin Jan Latecki Chapter 7: Expectation and variance.
The Binomial Distribution
Y Dosraniad Binomial Profion Bernoulli - Bernoulli Trials Profion sydd â dim ond 2 ganlyniad posibl. A Bernoulli trial is a random experiment with only.
Chapter 5 Discrete Probability Distributions
22/10/2015 How many words can you make? Three or more letters Must all include A A P I Y M L F.
X = 2*Bin(300,1/2) – 300 E[X] = 0 Y = 2*Bin(30,1/2) – 30 E[Y] = 0.
Probability & Statistics I IE 254 Summer 1999 Chapter 4  Continuous Random Variables  What is the difference between a discrete & a continuous R.V.?
Mean and Standard Deviation of Discrete Random Variables.
Canolrif Dosraniad Di-or I ddarganfod canolrif hapnewidyn gyda dosraniad di-dor, rydym yn defnyddio’r ffwythiant dosraniad cronnus F(x). Mae’r tebygolrwydd.
A Review of Some Fundamental Mathematical and Statistical Concepts UnB Mestrado em Ciências Contábeis Prof. Otávio Medeiros, MSc, PhD.
1 Continuous Probability Distributions Continuous Random Variables & Probability Distributions Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.
DISCRETE RANDOM VARIABLES.
MATH 4030 – 4B CONTINUOUS RANDOM VARIABLES Density Function PDF and CDF Mean and Variance Uniform Distribution Normal Distribution.
Statistics. A two-dimensional random variable with a uniform distribution.
Math 4030 – 6a Joint Distributions (Discrete)
Lecture 3 1 Recap Random variables Continuous random variable Sample space has infinitely many elements The density function f(x) is a continuous function.
AP Statistics Chapter 16. Discrete Random Variables A discrete random variable X has a countable number of possible values. The probability distribution.
Engineering Statistics ECIV 2305
The Distributive Property
Section 10.5 Let X be any random variable with (finite) mean  and (finite) variance  2. We shall assume X is a continuous type random variable with p.d.f.
The Variance of a Random Variable Lecture 35 Section Fri, Mar 26, 2004.
Tebygolrwydd - Probability Mae tebygolrwydd yn cael ei ddefnyddio pan gawn sefyllfaoedd lle mae elfen o ansicrwydd yn perthyn iddynt. Probability is used.
7.2 Means & Variances of Random Variables AP Statistics.
Statistics -Continuous probability distribution 2013/11/18.
Y dosraniad Poisson fel brasamcan i’r Binomial. Pan mae’r nifer y treialon mewn dosraniad Binomial yn fawr iawn, a’r tebygolrwydd i lwyddo yn fach iawn,
Week 61 Poisson Processes Model for times of occurrences (“arrivals”) of rare phenomena where λ – average number of arrivals per time period. X – number.
Random Variable 2013.
Lecture 3 B Maysaa ELmahi.
DISCRETE RANDOM VARIABLES
Probability and Estimation
Consolidation & Review
Means and Variances of Random Variables
Chapter 4: Mathematical Expectation:
Probability and Estimation
Y Dosraniad Poisson The Poisson Distribution
CONTINUOUS PROBABILITY DISTRIBUTIONS CHAPTER 15
Chapter 3: Getting the Hang of Statistics
More about Normal Distributions
Ffwythiant Dosraniad Cronnus F(x)
Probability Distribution – Example #2 - homework
Mean and Standard Deviation
Chebychev, Hoffding, Chernoff
Mean and Standard Deviation
Chapter 3: Getting the Hang of Statistics
The Distance to the Horizon
AP Statistics Chapter 16 Notes.
Probability Continued Chapter 6
Chapter 5: Discrete Probability Distributions
Financial Econometrics Fin. 505
Mean and Standard Deviation
Chapter 7 The Normal Distribution and Its Applications
MATH 3033 based on Dekking et al
Uniform Probability Distribution
7.2 Mathematical Expectation
Mathematical Expectation
Presentation transcript:

Cymedr ac Amrywiant Hapnewinynau Di-dor Er mwyn darganfod beth yw cymedr neu gwerth disgwyliedig hapnewidyn di-dor, rhaid i ni luosi’r ffwythiant dwysedd tebygolrwydd f(x) gydag x cyn integru rhwng y terfannau. E(X 2 ) = I ddarganfod yr amrywiant, rhaid darganfod E(X 2 ) i ddechrau gan fod Var (X) = E(X 2 ) – [E(X)] 2 E(X) = The Mean and Variance of a Continuous Random Variable In order to calculate the mean or expected value of a continuous random variable, we must multiply the probability density function f(x) with x before we integrate within the limits. To calculate the variance, we need to find E(X 2 ) since

Enghraifft - Example Dosrennir yr hapnewidyn di-dor X gyda ffwythiant dwysedd tebygolrwydd f, lle mae The continuous random variable X is distributed with probability density function f(x) where f(x) = 6x(1-x)ar gyfer 0 ≤ x ≤ 1 a)Darganfyddwch gymedr ac amrywiant X. Calculate the mean and variance of X. b)Diddwythwch gymedr ac amrywiant Deduce the mean and variance of (i)Y = 10X – 3 (ii)Z = 2(3 – X) 5 c)Enrhifwch E(5X 2 – 3X + 1) Evaluate E(5X 2 – 3X + 1)

a)Darganfyddwch gymedr ac amrywiant X. Calculate the mean and variance of X. f(x) = 6x(1-x) = 6x – 6x 2 E(X) =

Var (X) = E(X 2 ) – [E(X)] 2 E(X 2 ) = Var (X) =

b) Diddwythwch gymedr ac amrywiant Deduce the mean and variance of (i) Y = 10X – 3 (ii) Z = 2(3 – X) 5 (i) E(Y) = E(10X – 3) =10E(X) – 3 =2 6 – 2E(X) = 5 (ii) E(Z) = E 6 – 2X = – 2 x 1 = x 1 – 3 = 2 1 Var(Z) = Var 6 – 2X = x Var (X) = Var(Y) = Var(10X – 3) =10 2 Var(X) =5100 x 1 = x 1 = 5 20

c) Enrhifwch E(5X 2 – 3X + 1) Evaluate E(5X 2 – 3X + 1) E(5X 2 – 3X + 1) = 5E(X 2 ) – 3E(X) + 1 = 5 x x = Ymarfer/Exercise 1.4 Mathemateg - Ystadegaeth Uned S2 – CBAC Mathematics Statistics Unit S2 - WJEC Gwaith Cartref/Homework 11 Gwaith Cartref/Homework 12